Exact Minkowski sums of polygons with holes

Alon Baram, Efi Fogel, Dan Halperin, Michael Hemmer, Sebastian Morr

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

We present an efficient algorithm that computes the Minkowski sum of two polygons, which may have holes. The new algorithm is based on the convolution approach. Its efficiency stems in part from a property for Minkowski sums of polygons with holes, which in fact holds in any dimension: Given two polygons with holes, for each input polygon we can fill up the holes that are relatively small compared to the other polygon. Specifically, we can always fill up all the holes of at least one polygon, transforming it into a simple polygon, and still obtain exactly the same Minkowski sum. Obliterating holes in the input summands speeds up the computation of Minkowski sums. We introduce a robust implementation of the new algorithm, which follows the Exact Geometric Computation paradigm and thus guarantees exact results. We also present an empirical comparison of the performance of Minkowski sum construction of various input examples, where we show that the implementation of the new algorithm exhibits better performance than several other implementations in many cases. The software is available as part of the 2D Minkowski Sums package of Cgal (Computational Geometry Algorithms Library), starting from Release 4.7. Additional information and supplementary material is available at our project page http://acg.cs.tau.ac.il/projects/rc.

Original languageEnglish
Title of host publicationAlgorithms – ESA 2015 - 23rd Annual European Symposium, Proceedings
EditorsNikhil Bansal, Irene Finocchi
PublisherSpringer Verlag
Pages71-82
Number of pages12
ISBN (Print)9783662483497
DOIs
StatePublished - 2015
Event23rd European Symposium on Algorithms, ESA 2015 - Patras, Greece
Duration: 14 Sep 201516 Sep 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9294
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd European Symposium on Algorithms, ESA 2015
Country/TerritoryGreece
CityPatras
Period14/09/1516/09/15

Fingerprint

Dive into the research topics of 'Exact Minkowski sums of polygons with holes'. Together they form a unique fingerprint.

Cite this