Exact Euler-Maclaurin formulas for simple lattice polytopes

Yael Karshon, Shlomo Sternberg, Jonathan Weitsman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Euler-Maclaurin formulas for a polytope express the sum of the values of a function over the lattice points in the polytope in terms of integrals of the function and its derivatives over faces of the polytope or its expansions. Exact Euler-Maclaurin formulas [A.G. Khovanskii, A.V. Pukhlikov, Algebra and Analysis 4 (1992) 188-216; S.E. Cappell, J.L. Shaneson, Bull. Amer. Math. Soc. 30 (1994) 62-69; C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 885-890; V. Guillemin, J. Differential Geom. 45 (1997) 53-73; M. Brion, M. Vergne, J. Amer. Math. Soc. 10 (2) (1997) 371-392] apply to exponential or polynomial functions; Euler-Maclaurin formulas with remainder [Y. Karshon, S. Sternberg, J. Weitsman, Proc. Natl. Acad. Sci. 100 (2) (2003) 426-433; Duke Math. J. 130 (3) (2005) 401-434] apply to more general smooth functions. In this paper we review these results and present proofs of the exact formulas obtained by these authors, using elementary methods. We then use an algebraic formalism due to Cappell and Shaneson to relate the different formulas.

Original languageEnglish
Pages (from-to)1-50
Number of pages50
JournalAdvances in Applied Mathematics
Volume39
Issue number1
DOIs
StatePublished - Jul 2007
Externally publishedYes

Funding

FundersFunder number
National Science FoundationDMS 04/05670, DMS 99/71914
National Science Foundation
United States-Israel Binational Science Foundation2000352
United States-Israel Binational Science Foundation
Connaught Fund

    Fingerprint

    Dive into the research topics of 'Exact Euler-Maclaurin formulas for simple lattice polytopes'. Together they form a unique fingerprint.

    Cite this