@inproceedings{204613f011fd4c448bfb3ab5a08f9e88,
title = "Evolutionary network minimization: Adaptive implicit pruning of successful agents",
abstract = "Neurocontroller minimization is beneficial for constructing small parsimonious networks that permit a better understanding of their workings. This paper presents a novel, Evolutionary Network Minimization (ENM) algorithm which is applied to fully recurrent neurocontrollers. ENM is a simple, standard genetic algorithm with an additional step in which small weights are irreversibly eliminated. ENM has a unique combination of features which distinguish it from previous evolutionary minimization algorithms: 1. An explicit penalty term is not added to the fitness function. 2. Minimization begins after functional neurocontrollers have been successfully evolved. 3. Successful minimization relies solely on the workings of a drift that removes unimportant weights and, importantly, on continuing adaptive modifications of the magnitudes of the remaining weights. Our results testify that ENM is successful in extensively minimizing recurrent evolved neurocontrollers while keeping their fitness intact and maintaining their principal functional characteristics.",
author = "Zohar Ganon and Alon Keinan and Eytan Ruppin",
note = "Publisher Copyright: {\textcopyright} Springer-Verlag Berlin Heidelberg 2003.; 7th European Conference on Artificial Life, ECAL 2003 ; Conference date: 14-09-2003 Through 17-09-2003",
year = "2003",
doi = "10.1007/978-3-540-39432-7_34",
language = "אנגלית",
isbn = "3540200576",
series = "Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)",
publisher = "Springer Verlag",
pages = "319--327",
editor = "Wolfgang Banzhaf and Jens Ziegler and Thomas Christaller and Peter Dittrich and Kim, {Jan T.}",
booktitle = "Advances in Artificial Life",
}