TY - JOUR
T1 - Evolution of complexity in the integrin adhesome
AU - Zaidel-Bar, Ronen
PY - 2009/8/10
Y1 - 2009/8/10
N2 - Integrin-mediated adhesion is as ancient as multicellularity, but it was not always as complex as it is in humans. Here, I examine the extent of conservation of 192 adhesome proteins across the genomes of nine model organisms spanning one and a half billion years of evolution. The work reveals that Rho GTPases, lipid-and serine/threonine-kinases, and phosphatases existed before integrins, but tyrosine phosphorylation developed concomitant with integrins. The expansion of specific functional groups such as GAPs, GEFs, adaptors, and receptors is demonstrated, along with the expansion of specific protein domains, such as SH3, PH, SH2, CH, and LIM. Expansion is due to gene duplication and creation of families of paralogues. Apparently, these paralogues share few partners and create new sets of interactions, thus increasing specificity and the repertoire of integrin-mediated signaling. Interestingly, the average number of interactions positively correlates with the evolutionary age of proteins. While shedding light on the evolution of adhesome complexity, this analysis also highlights the relevance and creates a framework for studying integrin-mediated adhesion in simpler model organisms.
AB - Integrin-mediated adhesion is as ancient as multicellularity, but it was not always as complex as it is in humans. Here, I examine the extent of conservation of 192 adhesome proteins across the genomes of nine model organisms spanning one and a half billion years of evolution. The work reveals that Rho GTPases, lipid-and serine/threonine-kinases, and phosphatases existed before integrins, but tyrosine phosphorylation developed concomitant with integrins. The expansion of specific functional groups such as GAPs, GEFs, adaptors, and receptors is demonstrated, along with the expansion of specific protein domains, such as SH3, PH, SH2, CH, and LIM. Expansion is due to gene duplication and creation of families of paralogues. Apparently, these paralogues share few partners and create new sets of interactions, thus increasing specificity and the repertoire of integrin-mediated signaling. Interestingly, the average number of interactions positively correlates with the evolutionary age of proteins. While shedding light on the evolution of adhesome complexity, this analysis also highlights the relevance and creates a framework for studying integrin-mediated adhesion in simpler model organisms.
UR - http://www.scopus.com/inward/record.url?scp=68549085418&partnerID=8YFLogxK
U2 - 10.1083/jcb.200811067
DO - 10.1083/jcb.200811067
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:68549085418
SN - 0021-9525
VL - 186
SP - 317
EP - 321
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 3
ER -