Evidence for involvement of the voltage-dependent Na+ channel gating in depolarization-induced activation of G-proteins

M. Cohen-Armon, M. Sokolovsky

Research output: Contribution to journalArticlepeer-review

Abstract

Evidence for activation of pertussis-toxin-sensitive G-proteins by membrane depolarization in rat brainstem synaptoneurosomes was recently reported (Cohen-Armon, M., and Sokolovsky, M. (1991) J. Biol. Chem. 266, 2595-2605; (1991) Neurosci. Lett. 126, 87-90) and is further supported in this study by the observation that the depolarization-induced effect is inhibited when G-proteins are stabilized in the non-activated state with guanosine 5'-O-(2-thiodiphosphate) (GDPβS), which was introduced into synaptoneurosomes during the process of permeabilization and resealing. In the present study, agents that either keep the voltage-dependent Na+ channel in persistently activated state (while Na+ currents are blocked) or prevent it from activation were used in an attempt to determine whether the voltage- dependent Na+ channels are involved in the depolarization-induced activation of pertussis-toxin-sensitive G-proteins. The main probe employed was the cardiotonic and antiarrhythmic agent DPI, which is a racemic mixture of two enantiomers, one of which (the R enantiomer) reportedly prevents depolarization-induced activation of the Na+ channel while the other (the S enantiomer) inhibits Na+ channel inactivation. The results suggest that while inactivation of the voltage-dependent Na+ channel does not interfere with the putative depolarization-induced activation of G-proteins, membrane depolarization affects G-proteins and the coupled muscarinic receptors only if the voltage-dependent Na+ channels are capable of being activated. Thus, inhibition of the depolarization-induced activation of Na+ channels was accompanied by inhibition of the depolarization-induced activation of pertussis-toxin-sensitive G-proteins and by modifications of both the coupling of G-proteins to muscarinic receptors and the ADP-ribosylation of G(o)-proteins. These effects could be counteracted by persistent activation of the voltage-dependent Na+ channels (while Na+ current was blocked). Our observations may suggest that the voltage-dependent Na+ channel gating is involved in the depolarization-induced activation of pertussis toxin- sensitive G-proteins and may provide evidence for a possible mechanism of membrane depolarization signal transduction in excitable cells.

Original languageEnglish
Pages (from-to)9824-9838
Number of pages15
JournalJournal of Biological Chemistry
Volume268
Issue number13
StatePublished - 1993

Fingerprint

Dive into the research topics of 'Evidence for involvement of the voltage-dependent Na+ channel gating in depolarization-induced activation of G-proteins'. Together they form a unique fingerprint.

Cite this