TY - JOUR
T1 - Evaluation of the long-term skeletal effect induced by teratogen 5-aza-2′deoxycytidine on offspring of high (C3H/HeJ) and low (C57BL/6J) bone mass phenotype mice
AU - Khajuria, Deepak Kumar
AU - Raygorodskaya, Maria
AU - Kobyliansky, Eugene
AU - Gabet, Yankel
AU - Hiram Bab, Sahar
AU - Shochat, Chen
AU - Torchinsky, Arkady
AU - Karasik, David
N1 - Publisher Copyright:
© 2018 The Authors
PY - 2018/6
Y1 - 2018/6
N2 - The long term skeletal effects of antenatal exposure to teratogen 5-deoxy-2′-cytidine (5-AZA) were studied using two inbred strains, C3H/HeJ (C3H, with inherently stronger bones) and C57Bl/6J (C57, with weaker bones). We previously reported that in-utero exposure to 5-AZA resulted in loss of bone quality in 3- and 6-mo-old C3H offspring. In this study, we further examined whether the long-term effects of an acute teratogenic exposure are still evident in older mice. Bone phenotypes of 12 mo-old mice exposed to a single injection of 5-AZA on day 10 of their mother's pregnancy were evaluated by micro-computed tomography and compared to the untreated controls. The main observation of this study is that 5-AZA-induced loss of bone length was registered in 12-mo-old C57 and C3H males. As expected, we did not find differences in the 3rd lumbar vertebra since in-utero exposure to 5-AZA was shown to affect the limb buds but not the axial skeleton. Trajectory of changes in bone phenotypes from ages 3 mo through 6 mo to 12 mo was also compared; 5-AZA-exposed C57 males had consistently lower femoral length and trabecular BMD than age-matched controls. In summary, by characterizing teratogen-exposed C57 and C3H mice, we further confirmed that the adaptive response to antenatal insults continue into mid-life of the mice as well as there is a sex-specificity of these responses.
AB - The long term skeletal effects of antenatal exposure to teratogen 5-deoxy-2′-cytidine (5-AZA) were studied using two inbred strains, C3H/HeJ (C3H, with inherently stronger bones) and C57Bl/6J (C57, with weaker bones). We previously reported that in-utero exposure to 5-AZA resulted in loss of bone quality in 3- and 6-mo-old C3H offspring. In this study, we further examined whether the long-term effects of an acute teratogenic exposure are still evident in older mice. Bone phenotypes of 12 mo-old mice exposed to a single injection of 5-AZA on day 10 of their mother's pregnancy were evaluated by micro-computed tomography and compared to the untreated controls. The main observation of this study is that 5-AZA-induced loss of bone length was registered in 12-mo-old C57 and C3H males. As expected, we did not find differences in the 3rd lumbar vertebra since in-utero exposure to 5-AZA was shown to affect the limb buds but not the axial skeleton. Trajectory of changes in bone phenotypes from ages 3 mo through 6 mo to 12 mo was also compared; 5-AZA-exposed C57 males had consistently lower femoral length and trabecular BMD than age-matched controls. In summary, by characterizing teratogen-exposed C57 and C3H mice, we further confirmed that the adaptive response to antenatal insults continue into mid-life of the mice as well as there is a sex-specificity of these responses.
KW - Adult mice
KW - Bone loss
KW - Developmental origin of diseases
KW - Genetic heterogeneity
UR - http://www.scopus.com/inward/record.url?scp=85048558442&partnerID=8YFLogxK
U2 - 10.1016/j.bonr.2018.05.005
DO - 10.1016/j.bonr.2018.05.005
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 29955643
AN - SCOPUS:85048558442
SN - 2352-1872
VL - 8
SP - 239
EP - 243
JO - Bone Reports
JF - Bone Reports
ER -