TY - JOUR
T1 - Evaluation of Parkinson’s disease early diagnosis using single-channel EEG features and auditory cognitive assessment
AU - Molcho, Lior
AU - Maimon, Neta B.
AU - Hezi, Neomi
AU - Zeimer, Talya
AU - Intrator, Nathan
AU - Gurevich, Tanya
N1 - Publisher Copyright:
Copyright © 2023 Molcho, Maimon, Hezi, Zeimer, Intrator and Gurevich.
PY - 2023
Y1 - 2023
N2 - Background: Parkinson’s disease (PD) often presents with subtle early signs, making diagnosis difficult. F-DOPA PET imaging provides a reliable measure of dopaminergic function and is a primary tool for early PD diagnosis. This study aims to evaluate the ability of machine-learning (ML) extracted EEG features to predict F-DOPA results and distinguish between PD and non-PD patients. These features, extracted using a single-channel EEG during an auditory cognitive assessment, include EEG feature A0 associated with cognitive load in healthy subjects, and EEG feature L1 associated with cognitive task differentiation. Methods: Participants in this study are comprised of cognitively healthy patients who had undergone an F-DOPA PET scan as a part of their standard care (n = 32), and cognitively healthy controls (n = 20). EEG data collected using the Neurosteer system during an auditory cognitive task, was decomposed using wavelet-packet analysis and machine learning methods for feature extraction. These features were used in a connectivity analysis that was applied in a similar manner to fMRI connectivity. A preliminary model that relies on the features and their connectivity was used to predict initially unrevealed F-DOPA test results. Then, generalized linear mixed models (LMM) were used to discern between PD and non-PD subjects based on EEG variables. Results: The prediction model correctly classified patients with unrevealed scores as positive F-DOPA. EEG feature A0 and the Delta band revealed distinct activity patterns separating between study groups, with controls displaying higher activity than PD patients. In controls, EEG feature L1 showed variations between resting state and high-cognitive load, an effect lacking in PD patients. Conclusion: Our findings exhibit the potential of single-channel EEG technology in combination with an auditory cognitive assessment to distinguish positive from negative F-DOPA PET scores. This approach shows promise for early PD diagnosis. Additional studies are needed to further verify the utility of this tool as a potential biomarker for PD.
AB - Background: Parkinson’s disease (PD) often presents with subtle early signs, making diagnosis difficult. F-DOPA PET imaging provides a reliable measure of dopaminergic function and is a primary tool for early PD diagnosis. This study aims to evaluate the ability of machine-learning (ML) extracted EEG features to predict F-DOPA results and distinguish between PD and non-PD patients. These features, extracted using a single-channel EEG during an auditory cognitive assessment, include EEG feature A0 associated with cognitive load in healthy subjects, and EEG feature L1 associated with cognitive task differentiation. Methods: Participants in this study are comprised of cognitively healthy patients who had undergone an F-DOPA PET scan as a part of their standard care (n = 32), and cognitively healthy controls (n = 20). EEG data collected using the Neurosteer system during an auditory cognitive task, was decomposed using wavelet-packet analysis and machine learning methods for feature extraction. These features were used in a connectivity analysis that was applied in a similar manner to fMRI connectivity. A preliminary model that relies on the features and their connectivity was used to predict initially unrevealed F-DOPA test results. Then, generalized linear mixed models (LMM) were used to discern between PD and non-PD subjects based on EEG variables. Results: The prediction model correctly classified patients with unrevealed scores as positive F-DOPA. EEG feature A0 and the Delta band revealed distinct activity patterns separating between study groups, with controls displaying higher activity than PD patients. In controls, EEG feature L1 showed variations between resting state and high-cognitive load, an effect lacking in PD patients. Conclusion: Our findings exhibit the potential of single-channel EEG technology in combination with an auditory cognitive assessment to distinguish positive from negative F-DOPA PET scores. This approach shows promise for early PD diagnosis. Additional studies are needed to further verify the utility of this tool as a potential biomarker for PD.
KW - F-DOPA PET scan
KW - Parkinson’s disease
KW - biomarkers
KW - cognition
KW - cognitive assessment
KW - dopamine
KW - electroencephalography
KW - machine learning
UR - http://www.scopus.com/inward/record.url?scp=85181193058&partnerID=8YFLogxK
U2 - 10.3389/fneur.2023.1273458
DO - 10.3389/fneur.2023.1273458
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 38174098
AN - SCOPUS:85181193058
SN - 1664-2295
VL - 14
JO - Frontiers in Neurology
JF - Frontiers in Neurology
M1 - 1273458
ER -