TY - JOUR
T1 - Evaluation of graphene-ferrocene nanocomposite as multifunctional combustion catalyst in AP-HTPB propellant
AU - Zhang, Ming
AU - Zhao, Fengqi
AU - Wang, Ying
AU - Chen, Xueli
AU - Pei, Qing
AU - Xu, Huixiang
AU - Hao, Haixia
AU - Yang, Yanjing
AU - Li, Hui
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/10/15
Y1 - 2021/10/15
N2 - A novel graphene-ferrocene nanocomposite (G-792-Fe) was designed, prepared and characterized systemically using SEM, EDS, FTIR, XPS and RAMAN methods. The as-synthesized G-792-Fe was used as a multifunctional combustion catalyst in ammonium perchlorate-hydroxyl terminated polybutadiene (AP-HTPB) propellant, and the combustion, anti-migration, safety and mechanical performances of AP-HTPB propellant were revealed. The results showed that anchoring on the surface of graphene can effectively inhibit the migration and volatilization of ferrocene compounds in AP-HTPB propellant. The excellent combustion catalytic performance of G-792-Fe on AP-HTPB propellant (burning rate of AP-HTPB propellant containing G-792-Fe increases from 13.87 mm·s−1 to 17.28 mm·s−1 at 15 MPa) is attributed to its positive effect on AP decomposition, which generates more gas-phase products beneficial to the combustion surface thermal feedback and the gaseous REDOX reaction. Additionally, the G-792-Fe presents positive effects on reducing the electrostatic sensitivity and improving the mechanical properties of AP-HTPB propellant. The ignition energy (E50) and the maximum tensile strength (σm) of AP-HTPB propellant containing G-792-Fe were increased by 24.4 mJ and 0.75 MPa respectively, compared with AP-HTPB propellant containing catocene (156.8 mJ and 1.26 MPa). The positive effects of G-792-Fe on safety and mechanical performances of AP-HTPB propellant can be due the outstanding electrical and mechanical properties of graphene-based material. Results of this study have implications concerning design and application of multifunctional combustion catalyst, which can improve the combustion performance, anti-migration performance, safety performance and mechanical properties of AP-HTPB propellant.
AB - A novel graphene-ferrocene nanocomposite (G-792-Fe) was designed, prepared and characterized systemically using SEM, EDS, FTIR, XPS and RAMAN methods. The as-synthesized G-792-Fe was used as a multifunctional combustion catalyst in ammonium perchlorate-hydroxyl terminated polybutadiene (AP-HTPB) propellant, and the combustion, anti-migration, safety and mechanical performances of AP-HTPB propellant were revealed. The results showed that anchoring on the surface of graphene can effectively inhibit the migration and volatilization of ferrocene compounds in AP-HTPB propellant. The excellent combustion catalytic performance of G-792-Fe on AP-HTPB propellant (burning rate of AP-HTPB propellant containing G-792-Fe increases from 13.87 mm·s−1 to 17.28 mm·s−1 at 15 MPa) is attributed to its positive effect on AP decomposition, which generates more gas-phase products beneficial to the combustion surface thermal feedback and the gaseous REDOX reaction. Additionally, the G-792-Fe presents positive effects on reducing the electrostatic sensitivity and improving the mechanical properties of AP-HTPB propellant. The ignition energy (E50) and the maximum tensile strength (σm) of AP-HTPB propellant containing G-792-Fe were increased by 24.4 mJ and 0.75 MPa respectively, compared with AP-HTPB propellant containing catocene (156.8 mJ and 1.26 MPa). The positive effects of G-792-Fe on safety and mechanical performances of AP-HTPB propellant can be due the outstanding electrical and mechanical properties of graphene-based material. Results of this study have implications concerning design and application of multifunctional combustion catalyst, which can improve the combustion performance, anti-migration performance, safety performance and mechanical properties of AP-HTPB propellant.
KW - Combustion mechanism
KW - Functional material
KW - Graphene
KW - Nanocomposite
KW - Solid propellant
UR - http://www.scopus.com/inward/record.url?scp=85108020205&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2021.121229
DO - 10.1016/j.fuel.2021.121229
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85108020205
SN - 0016-2361
VL - 302
JO - Fuel
JF - Fuel
M1 - 121229
ER -