TY - JOUR
T1 - Evaluation of Critical Flicker-Fusion Frequency Measurement Methods for the Investigation of Visual Temporal Resolution
AU - Eisen-Enosh, Auria
AU - Farah, Nairouz
AU - Burgansky-Eliash, Zvia
AU - Polat, Uri
AU - Mandel, Yossi
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Recent studies highlight the importance of the temporal domain in visual processing. Critical Flicker-Fusion Frequency (CFF), the frequency at which a flickering light is perceived as continuous, is widely used for evaluating visual temporal processing. However, substantial variability in the psychophysical paradigms, used for measuring CFF, leads to substantial variability in the reported results. Here, we report on a comprehensive comparison of CFF measurements through three different psychophysical paradigms: methods of limits; method of constant stimuli, and staircase method. Our results demonstrate that the CFF can be reliably measured with high repeatability by all three psychophysics methods. However, correlations (r = 0.92, p<0.001) and agreement (Bland Altman test indicated 95% confidence limit variation of ±3.6 Hz), were highest between the staircase and the constant stimuli methods. The time required to complete the test was significantly longer for the constant stimuli method as compared to other methods (p < 0.001). Our results highlight the suitability of the adaptive paradigm for efficiently measuring temporal resolution in the visual system.
AB - Recent studies highlight the importance of the temporal domain in visual processing. Critical Flicker-Fusion Frequency (CFF), the frequency at which a flickering light is perceived as continuous, is widely used for evaluating visual temporal processing. However, substantial variability in the psychophysical paradigms, used for measuring CFF, leads to substantial variability in the reported results. Here, we report on a comprehensive comparison of CFF measurements through three different psychophysical paradigms: methods of limits; method of constant stimuli, and staircase method. Our results demonstrate that the CFF can be reliably measured with high repeatability by all three psychophysics methods. However, correlations (r = 0.92, p<0.001) and agreement (Bland Altman test indicated 95% confidence limit variation of ±3.6 Hz), were highest between the staircase and the constant stimuli methods. The time required to complete the test was significantly longer for the constant stimuli method as compared to other methods (p < 0.001). Our results highlight the suitability of the adaptive paradigm for efficiently measuring temporal resolution in the visual system.
UR - http://www.scopus.com/inward/record.url?scp=85034446038&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-15034-z
DO - 10.1038/s41598-017-15034-z
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 29142231
AN - SCOPUS:85034446038
SN - 2045-2322
VL - 7
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 15621
ER -