TY - JOUR
T1 - Estrogens antagonize RUNX2-mediated osteoblast-driven osteoclastogenesis through regulating RANKL membrane association
AU - Martin, Anthony
AU - Xiong, Jian
AU - Koromila, Theodora
AU - Ji, Jie S.
AU - Chang, Stephanie
AU - Song, Yae S.
AU - Miller, Jonathan L.
AU - Han, Chun Ya
AU - Kostenuik, Paul
AU - Krum, Susan A.
AU - Chimge, Nyam Osor
AU - Gabet, Yankel
AU - Frenkel, Baruch
N1 - Publisher Copyright:
© 2015 Elsevier Inc.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - In addition to its thoroughly investigated role in bone formation, the osteoblast master transcription factor RUNX2 also promotes osteoclastogenesis and bone resorption. Here we demonstrate that 17β-estradiol (E2), strongly inhibits RUNX2-mediated osteoblast-driven osteoclastogenesis in co-cultures. Towards deciphering the underlying mechanism, we induced premature expression of RUNX2 in primary murine pre-osteoblasts, which resulted in robust differentiation of co-cultured splenocytes into mature osteoclasts. This was attributable to RUNX2-mediated increase in RANKL secretion, determined by ELISA, as well as to RUNX2-mediated increase in RANKL association with the osteoblast membrane, demonstrated using confocal fluorescence microscopy. The increased association with the osteoblast membrane was recapitulated by transiently expressed GFP-RANKL. E2 abolished the RUNX2-mediated increase in membrane-associated RANKL and GFP-RANKL, as well as the concomitant osteoclastogenesis. RUNX2-mediated RANKL cellular redistribution was attributable in part to a decrease in Opg expression, but E2 did not influence Opg expression either in the presence or absence of RUNX2. Diminution of RUNX2-mediated osteoclastogenesis by E2 occurred regardless of whether the pre-osteoclasts were derived from wild type or estrogen receptor alpha (ERα)-knockout mice, suggesting that activated ERα inhibited osteoblast-driven osteoclastogenesis by acting in osteoblasts, possibly targeting RUNX2. Indeed, microarray analysis demonstrated global attenuation of the RUNX2 response by E2, including abrogation of Pstpip2 expression, which likely plays a critical role in membrane trafficking. Finally, the selective ER modulators (SERMs) tamoxifen and raloxifene mimicked E2 in abrogating the stimulatory effect of osteoblastic RUNX2 on osteoclast differentiation in the co-culture assay. Thus, E2 antagonizes RUNX2-mediated RANKL trafficking and subsequent osteoclastogenesis. Targeting RUNX2 and/or downstream mechanisms that regulate RANKL trafficking may lead to the development of improved SERMs and possibly non-hormonal therapeutic approaches to high turnover bone disease.
AB - In addition to its thoroughly investigated role in bone formation, the osteoblast master transcription factor RUNX2 also promotes osteoclastogenesis and bone resorption. Here we demonstrate that 17β-estradiol (E2), strongly inhibits RUNX2-mediated osteoblast-driven osteoclastogenesis in co-cultures. Towards deciphering the underlying mechanism, we induced premature expression of RUNX2 in primary murine pre-osteoblasts, which resulted in robust differentiation of co-cultured splenocytes into mature osteoclasts. This was attributable to RUNX2-mediated increase in RANKL secretion, determined by ELISA, as well as to RUNX2-mediated increase in RANKL association with the osteoblast membrane, demonstrated using confocal fluorescence microscopy. The increased association with the osteoblast membrane was recapitulated by transiently expressed GFP-RANKL. E2 abolished the RUNX2-mediated increase in membrane-associated RANKL and GFP-RANKL, as well as the concomitant osteoclastogenesis. RUNX2-mediated RANKL cellular redistribution was attributable in part to a decrease in Opg expression, but E2 did not influence Opg expression either in the presence or absence of RUNX2. Diminution of RUNX2-mediated osteoclastogenesis by E2 occurred regardless of whether the pre-osteoclasts were derived from wild type or estrogen receptor alpha (ERα)-knockout mice, suggesting that activated ERα inhibited osteoblast-driven osteoclastogenesis by acting in osteoblasts, possibly targeting RUNX2. Indeed, microarray analysis demonstrated global attenuation of the RUNX2 response by E2, including abrogation of Pstpip2 expression, which likely plays a critical role in membrane trafficking. Finally, the selective ER modulators (SERMs) tamoxifen and raloxifene mimicked E2 in abrogating the stimulatory effect of osteoblastic RUNX2 on osteoclast differentiation in the co-culture assay. Thus, E2 antagonizes RUNX2-mediated RANKL trafficking and subsequent osteoclastogenesis. Targeting RUNX2 and/or downstream mechanisms that regulate RANKL trafficking may lead to the development of improved SERMs and possibly non-hormonal therapeutic approaches to high turnover bone disease.
KW - Postmenopausal osteoporosis
KW - Protein trafficking
KW - Secretion
KW - TRAP
UR - http://www.scopus.com/inward/record.url?scp=84923932220&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2015.02.007
DO - 10.1016/j.bone.2015.02.007
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84923932220
SN - 8756-3282
VL - 75
SP - 96
EP - 104
JO - Bone
JF - Bone
ER -