TY - JOUR
T1 - Estimation of the Relative Abundance of Quartz to Clay Minerals Using the Visible–Near-Infrared–Shortwave-Infrared Spectral Region
AU - Francos, Nicolas
AU - Notesco, Gila
AU - Ben-Dor, Eyal
N1 - Publisher Copyright:
© The Author(s) 2021.
PY - 2021/7
Y1 - 2021/7
N2 - Quartz is the most abundant mineral on the earth’s surface. It is spectrally active in the longwave infrared (LWIR) region with no significant spectral features in the optical domain, i.e., visible–near-infrared–shortwave-infrared (Vis–NIR–SWIR) region. Several space agencies are planning to mount optical image spectrometers in space, with one of their missions being to map raw materials. However, these sensors are active across the optical region, making the spectral identification of quartz mineral problematic. This study demonstrates that indirect relationships between the optical and LWIR regions (where quartz is spectrally dominant) can be used to assess quartz content spectrally using solely the optical region. To achieve this, we made use of the legacy Israeli soil spectral library, which characterizes arid and semiarid soils through comprehensive chemical and mineral analyses along with spectral measurements across the Vis–NIR–SWIR region (reflectance) and LWIR region (emissivity). Recently, a Soil Quartz Clay Mineral Index (SQCMI) was developed using mineral-related emissivity features to determine the content of quartz, relative to clay minerals, in the soil. The SQCMI was highly and significantly correlated with the Vis–NIR–SWIR spectral region (R2= 0.82, root mean square error (RMSE) = 0.01, ratio of performance to deviation (RPD) = 2.34), whereas direct estimation of the quartz content using a gradient-boosting algorithm against the Vis–NIR–SWIR region provided poor results (R2= 0.45, RMSE = 15.63, RPD = 1.32). Moreover, estimation of the SQCMI value was even more accurate when only the 2000–2450 nm spectral range (atmospheric window) was used (R2= 0.9, RMSE = 0.005, RPD = 1.95). These results suggest that reflectance data across the 2000–2450 nm spectral region can be used to estimate quartz content, relative to clay minerals in the soil satisfactorily using hyperspectral remote sensing means.
AB - Quartz is the most abundant mineral on the earth’s surface. It is spectrally active in the longwave infrared (LWIR) region with no significant spectral features in the optical domain, i.e., visible–near-infrared–shortwave-infrared (Vis–NIR–SWIR) region. Several space agencies are planning to mount optical image spectrometers in space, with one of their missions being to map raw materials. However, these sensors are active across the optical region, making the spectral identification of quartz mineral problematic. This study demonstrates that indirect relationships between the optical and LWIR regions (where quartz is spectrally dominant) can be used to assess quartz content spectrally using solely the optical region. To achieve this, we made use of the legacy Israeli soil spectral library, which characterizes arid and semiarid soils through comprehensive chemical and mineral analyses along with spectral measurements across the Vis–NIR–SWIR region (reflectance) and LWIR region (emissivity). Recently, a Soil Quartz Clay Mineral Index (SQCMI) was developed using mineral-related emissivity features to determine the content of quartz, relative to clay minerals, in the soil. The SQCMI was highly and significantly correlated with the Vis–NIR–SWIR spectral region (R2= 0.82, root mean square error (RMSE) = 0.01, ratio of performance to deviation (RPD) = 2.34), whereas direct estimation of the quartz content using a gradient-boosting algorithm against the Vis–NIR–SWIR region provided poor results (R2= 0.45, RMSE = 15.63, RPD = 1.32). Moreover, estimation of the SQCMI value was even more accurate when only the 2000–2450 nm spectral range (atmospheric window) was used (R2= 0.9, RMSE = 0.005, RPD = 1.95). These results suggest that reflectance data across the 2000–2450 nm spectral region can be used to estimate quartz content, relative to clay minerals in the soil satisfactorily using hyperspectral remote sensing means.
KW - LWIR
KW - Soil spectroscopy
KW - Vis–NIR–SWIR
KW - clay minerals
KW - data analysis
KW - gradient boosting
KW - longwave infrared
KW - machine learning
KW - quartz
KW - soil spectral library
KW - thermal remote sensing
KW - visible–near-infrared–shortwave-infrared
UR - http://www.scopus.com/inward/record.url?scp=85102295061&partnerID=8YFLogxK
U2 - 10.1177/0003702821998302
DO - 10.1177/0003702821998302
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 33687281
AN - SCOPUS:85102295061
SN - 0003-7028
VL - 75
SP - 882
EP - 892
JO - Applied Spectroscopy
JF - Applied Spectroscopy
IS - 7
ER -