TY - JOUR
T1 - Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood
AU - Wellcome Trust Case-Control Consortium
AU - Schizophrenia Working Group of the Psychiatric Genomics Consortium
AU - Psychosis Endophenotypes International Consortium
AU - Ni, Guiyan
AU - Moser, Gerhard
AU - Ripke, Stephan
AU - Neale, Benjamin M.
AU - Corvin, Aiden
AU - Walters, James T.R.
AU - Farh, Kai How
AU - Holmans, Peter A.
AU - Lee, Phil
AU - Bulik-Sullivan, Brendan
AU - Collier, David A.
AU - Huang, Hailiang
AU - Pers, Tune H.
AU - Agartz, Ingrid
AU - Agerbo, Esben
AU - Albus, Margot
AU - Alexander, Madeline
AU - Amin, Farooq
AU - Bacanu, Silviu A.
AU - Begemann, Martin
AU - Belliveau, Richard A.
AU - Bene, Judit
AU - Bergen, Sarah E.
AU - Bevilacqua, Elizabeth
AU - Bigdeli, Tim B.
AU - Black, Donald W.
AU - Bruggeman, Richard
AU - Buccola, Nancy G.
AU - Buckner, Randy L.
AU - Byerley, William
AU - Cahn, Wiepke
AU - Cai, Guiqing
AU - Campion, Dominique
AU - Cantor, Rita M.
AU - Carr, Vaughan J.
AU - Carrera, Noa
AU - Catts, Stanley V.
AU - Chambert, Kimberly D.
AU - Chan, Raymond C.K.
AU - Chen, Ronald Y.L.
AU - Chen, Eric Y.H.
AU - Cheng, Wei
AU - Cheung, Eric F.C.
AU - Chong, Siow Ann
AU - Cloninger, C. Robert
AU - Cohen, David
AU - Cohen, Nadine
AU - Cormican, Paul
AU - Davidson, Michael
AU - Weiser, Mark
N1 - Publisher Copyright:
© 2018 American Society of Human Genetics
PY - 2018/6/7
Y1 - 2018/6/7
N2 - Genetic correlation is a key population parameter that describes the shared genetic architecture of complex traits and diseases. It can be estimated by current state-of-art methods, i.e., linkage disequilibrium score regression (LDSC) and genomic restricted maximum likelihood (GREML). The massively reduced computing burden of LDSC compared to GREML makes it an attractive tool, although the accuracy (i.e., magnitude of standard errors) of LDSC estimates has not been thoroughly studied. In simulation, we show that the accuracy of GREML is generally higher than that of LDSC. When there is genetic heterogeneity between the actual sample and reference data from which LD scores are estimated, the accuracy of LDSC decreases further. In real data analyses estimating the genetic correlation between schizophrenia (SCZ) and body mass index, we show that GREML estimates based on ∼150,000 individuals give a higher accuracy than LDSC estimates based on ∼400,000 individuals (from combined meta-data). A GREML genomic partitioning analysis reveals that the genetic correlation between SCZ and height is significantly negative for regulatory regions, which whole genome or LDSC approach has less power to detect. We conclude that LDSC estimates should be carefully interpreted as there can be uncertainty about homogeneity among combined meta-datasets. We suggest that any interesting findings from massive LDSC analysis for a large number of complex traits should be followed up, where possible, with more detailed analyses with GREML methods, even if sample sizes are lesser.
AB - Genetic correlation is a key population parameter that describes the shared genetic architecture of complex traits and diseases. It can be estimated by current state-of-art methods, i.e., linkage disequilibrium score regression (LDSC) and genomic restricted maximum likelihood (GREML). The massively reduced computing burden of LDSC compared to GREML makes it an attractive tool, although the accuracy (i.e., magnitude of standard errors) of LDSC estimates has not been thoroughly studied. In simulation, we show that the accuracy of GREML is generally higher than that of LDSC. When there is genetic heterogeneity between the actual sample and reference data from which LD scores are estimated, the accuracy of LDSC decreases further. In real data analyses estimating the genetic correlation between schizophrenia (SCZ) and body mass index, we show that GREML estimates based on ∼150,000 individuals give a higher accuracy than LDSC estimates based on ∼400,000 individuals (from combined meta-data). A GREML genomic partitioning analysis reveals that the genetic correlation between SCZ and height is significantly negative for regulatory regions, which whole genome or LDSC approach has less power to detect. We conclude that LDSC estimates should be carefully interpreted as there can be uncertainty about homogeneity among combined meta-datasets. We suggest that any interesting findings from massive LDSC analysis for a large number of complex traits should be followed up, where possible, with more detailed analyses with GREML methods, even if sample sizes are lesser.
KW - SNP heritability
KW - accuracy
KW - biasedness
KW - body mass index
KW - genetic correlation
KW - genome-wide SNPs
KW - genomic restricted maximum likelihood
KW - height
KW - linkage disequilibrium score regression
KW - schizophrenia
UR - http://www.scopus.com/inward/record.url?scp=85046126170&partnerID=8YFLogxK
U2 - 10.1016/j.ajhg.2018.03.021
DO - 10.1016/j.ajhg.2018.03.021
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 29754766
AN - SCOPUS:85046126170
SN - 0002-9297
VL - 102
SP - 1185
EP - 1194
JO - American Journal of Human Genetics
JF - American Journal of Human Genetics
IS - 6
ER -