ER stress induces alternative nonproteasomal degradation of ER proteins but not of cytosolic ones

Marina Shenkman, Sandra Tolchinsky, Gerardo Z. Lederkremer

Research output: Contribution to journalArticlepeer-review


Inhibition of protein folding in the endoplasmic reticulum (ER) causes ER stress, which triggers the unfolded protein response (UPR). To decrease the biosynthetic burden on the ER, the UPR inhibits in its initial stages protein synthesis. At later stages it upregulates components of ER-associated degradation (ERAD) and of the ubiquitin/proteasome system, which targets ER as well as cytosolic proteins for disposal. Here we report that, at later stages, the UPR also activates an alternative nonproteasomal pathway of degradation, which is resistant to proteasome inhibitors and is specific for ER substrates (assessed with uncleaved precursor of asialoglycoprotein receptor H2a and unassembled CD3δ) and not for cytosolic ones (p53). To mimic the initial inhibition of translation during UPR, we incubated cells with cycloheximide. After this treatment, degradation of ERAD substrates was no longer effected by proteasomal inhibition, similarly to the observed outcome of UPR. The degradation also became insensitive to abrogation of ubiquitination in a cell line carrying a thermosensitive E1 ubiquitin activating enzyme mutant. Of all protease inhibitors tested, only the metal chelator o-phenanthroline could block this nonproteasomal degradation. Preincubation of o-phenanthroline with Mn 2+ or Co2+, but not with other cations, reversed the inhibition. Our results suggest that, upon inhibition of translation, an alternative nonproteasomal pathway is activated for degradation of proteins from the ER. This involves a Mn2+/Co2+-dependent metalloprotease or other metalloprotein. The alternative pathway selectively targets ERAD substrates to reduce the ER burden, but does not affect p53, the levels of which remain dependent on proteasomal control.

Original languageEnglish
Pages (from-to)373-383
Number of pages11
JournalCell Stress and Chaperones
Issue number4
StatePublished - Dec 2007


Dive into the research topics of 'ER stress induces alternative nonproteasomal degradation of ER proteins but not of cytosolic ones'. Together they form a unique fingerprint.

Cite this