Enhancing LMMSE Performance with Modest Complexity Increase via Neural Network Equalizers

Vadim Rozenfeld*, Dan Raphaeli, Oded Bialer

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The BCJR algorithm is renowned for its optimal equalization, minimizing bit error rate (BER) over intersymbol interference (ISI) channels. However, its complexity grows exponentially with the channel memory, posing a significant computational burden. In contrast, the linear minimum mean square error (LMMSE) equalizer offers a notably simpler solution, albeit with reduced performance compared to the BCJR. Recently, Neural Network (NN) based equalizers have emerged as promising alternatives. Trained to map observations to the original transmitted symbols, these NNs demonstrate performance similar to the BCJR algorithm. However, they often entail a high number of learnable parameters, resulting in complexities comparable to or even larger than the BCJR. This paper explores the potential of NN-based equalization with a reduced number of learnable parameters and low complexity. We introduce a NN equalizer with complexity comparable to LMMSE, surpassing LMMSE performance and achieving a modest performance gap from the BCJR equalizer. A significant challenge with NNs featuring a limited parameter count is their susceptibility to converging to local minima, leading to suboptimal performance. To address this challenge, we propose a novel NN equalizer architecture with a unique initialization approach based on LMMSE. This innovative method effectively overcomes optimization challenges and enhances LMMSE performance, applicable both with and without turbo decoding.

Original languageEnglish
Title of host publicationGLOBECOM 2024 - 2024 IEEE Global Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2365-2370
Number of pages6
ISBN (Electronic)9798350351255
DOIs
StatePublished - 2024
Event2024 IEEE Global Communications Conference, GLOBECOM 2024 - Cape Town, South Africa
Duration: 8 Dec 202412 Dec 2024

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Conference

Conference2024 IEEE Global Communications Conference, GLOBECOM 2024
Country/TerritorySouth Africa
CityCape Town
Period8/12/2412/12/24

Keywords

  • Intersymbol interference
  • machine learning
  • neural networks
  • turbo equalization

Fingerprint

Dive into the research topics of 'Enhancing LMMSE Performance with Modest Complexity Increase via Neural Network Equalizers'. Together they form a unique fingerprint.

Cite this