TY - JOUR
T1 - Enhanced survival and neurite network formation of human umbilical cord blood neuronal progenitors in three-dimensional collagen constructs
AU - Bercu, Marian M.
AU - Arien-Zakay, Hadar
AU - Stoler, Dana
AU - Lecht, Shimon
AU - Lelkes, Peter I.
AU - Samuel, Simcha
AU - Or, Reuven
AU - Nagler, Arnon
AU - Lazarovici, Philip
AU - Elchalal, Uriel
N1 - Funding Information:
Acknowledgments This study was supported by the Israel Ministry of Science and Technology (PL). PL holds the Jacob Gitlin Chair in Physiology and is affiliated with and supported by the David R. Bloom Center for Pharmacy and the Dr. Adolf and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics at the Hebrew University of Jerusalem, Israel. PIL is the Laura H. Carnell Professor of Regenerative Engineering at Temple University’s Department of Bioengineering. The authors thank Dr. Marck Tarshish, Dr. Ezra Rachamim, and Ms. Zahava Cohen for their technical support.
PY - 2013/10
Y1 - 2013/10
N2 - Umbilical cord blood (CB) stem cells have been proposed for cell-based therapeutic applications for diverse diseases of the CNS. We hypothesized that tissue-engineering strategies may extend the efficacy of these approaches by improving the long-term viability and function of stem cell-derived neuronal progenitors. To test our hypothesis, we explored the survival and differentiation of human CB-derived neuronal progenitors (HUCBNP) in a three-dimensional (3D) collagen construct. In contrast to two-dimensional culture conditions, the cells survived in 3D for an extended period of time of more than 2 months. Under 3D conditions, HUCBNP underwent spontaneous neuronal differentiation, which was further enhanced by treatment with neuronal conditioned medium (CM) and nerve growth factor (NGF). Neurite outgrowth, quantified by assessing the fractal dimension (D f) of the complex neuronal networks, was significantly enhanced under 3D conditions in the presence of CM/NGF, concomitant with a reduced expression of the early neuronal marker nestin (1.9-fold), and increased levels of mature neuronal markers such as MAP-2 (3.6-fold), β-tubulin (1.5-fold), and neuronal specific enolase (6.6-fold) and the appearance of the synaptic marker synaptophysin. To assess the feasibility for clinical usage, HUCBNP were also isolated from frozen CB samples and cultured under 3D conditions. The data indicate the essential complete preservation of neurotrophic (survival) and neurotropic (neurite outgrowth) properties. In conclusion, 3D culture conditions are proposed as an essential step for both maintenance of CB neuronal progenitors in vitro and for investigating specific features of neuronal differentiation towards future use in regenerative therapy.
AB - Umbilical cord blood (CB) stem cells have been proposed for cell-based therapeutic applications for diverse diseases of the CNS. We hypothesized that tissue-engineering strategies may extend the efficacy of these approaches by improving the long-term viability and function of stem cell-derived neuronal progenitors. To test our hypothesis, we explored the survival and differentiation of human CB-derived neuronal progenitors (HUCBNP) in a three-dimensional (3D) collagen construct. In contrast to two-dimensional culture conditions, the cells survived in 3D for an extended period of time of more than 2 months. Under 3D conditions, HUCBNP underwent spontaneous neuronal differentiation, which was further enhanced by treatment with neuronal conditioned medium (CM) and nerve growth factor (NGF). Neurite outgrowth, quantified by assessing the fractal dimension (D f) of the complex neuronal networks, was significantly enhanced under 3D conditions in the presence of CM/NGF, concomitant with a reduced expression of the early neuronal marker nestin (1.9-fold), and increased levels of mature neuronal markers such as MAP-2 (3.6-fold), β-tubulin (1.5-fold), and neuronal specific enolase (6.6-fold) and the appearance of the synaptic marker synaptophysin. To assess the feasibility for clinical usage, HUCBNP were also isolated from frozen CB samples and cultured under 3D conditions. The data indicate the essential complete preservation of neurotrophic (survival) and neurotropic (neurite outgrowth) properties. In conclusion, 3D culture conditions are proposed as an essential step for both maintenance of CB neuronal progenitors in vitro and for investigating specific features of neuronal differentiation towards future use in regenerative therapy.
KW - Collagen gel
KW - Human umbilical cord blood progenitors
KW - Long-term survival
KW - Neuronal differentiation
KW - Three-dimensional construct
UR - http://www.scopus.com/inward/record.url?scp=84885179409&partnerID=8YFLogxK
U2 - 10.1007/s12031-012-9933-z
DO - 10.1007/s12031-012-9933-z
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 23233347
AN - SCOPUS:84885179409
SN - 0895-8696
VL - 51
SP - 249
EP - 261
JO - Journal of Molecular Neuroscience
JF - Journal of Molecular Neuroscience
IS - 2
ER -