Energy storage systems - Grid connection using synchronverters

Gal Barzilai, Lior Marcus, George Weiss

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

We investigate the design of future energy storage systems by exploring one particular solution, in simulations. We use Lithium-ion batteries for storage, a dual active bridge (DAB) for DC to DC conversion and a synchronverter to transfer energy from the DC bus to the utility grid. We show how some recent improvements to the synchronverter algorithm can be combined with a battery management algorithm that will charge or discharge the batteries to achieve a maximal profit for the operator of the storage station, while at the same time contributing to the stability of the grid by providing frequency droop, voltage droop inertia and fault ride-through. We discuss different open loop and closed loop control algorithms for the DAB as well as for the overall system that will further increase its efficiency. We simulate the use of two DABs, one for the positive DC voltage and one for the negative one, with a 5KW three-level synchronverter working on the 230V grid.

Original languageEnglish
Title of host publication2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509021529
DOIs
StatePublished - 4 Jan 2017
Event2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016 - Eilat, Israel
Duration: 16 Nov 201618 Nov 2016

Publication series

Name2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016

Conference

Conference2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016
Country/TerritoryIsrael
CityEilat
Period16/11/1618/11/16

Keywords

  • Synchronverter
  • droop control
  • dual active bridge
  • energy storage system
  • model predictive control

Fingerprint

Dive into the research topics of 'Energy storage systems - Grid connection using synchronverters'. Together they form a unique fingerprint.

Cite this