TY - JOUR
T1 - Energy allocation trade-offs as a function of age in fungiid corals
AU - Grinblat, Mila
AU - Eyal-Shaham, Lee
AU - Eyal, Gal
AU - Ben-Zvi, Or
AU - Harii, Saki
AU - Morita, Masaya
AU - Sakai, Kazuhiko
AU - Hirose, Mamiko
AU - Miller, David J.
AU - Loya, Yossi
N1 - Publisher Copyright:
Copyright © 2023 Grinblat, Eyal-Shaham, Eyal, Ben-Zvi, Harii, Morita, Sakai, Hirose, Miller and Loya.
PY - 2023
Y1 - 2023
N2 - To compete effectively, living organisms must adjust the allocation of available energy resources for growth, survival, maintenance, and reproduction throughout their life histories. Energy demands and allocations change throughout the life history of an organism, and understanding their energy allocation strategies requires determination of the relative age of individuals. As most scleractinian corals are colonial, the relationship between age and mass/size is complicated by colony fragmentation, partial mortality, and asexual reproduction. To overcome these limitations, solitary mushroom corals, Herpolitha limax from Okinawa, Japan and Fungia fungites from Okinawa and the Great Barrier Reef (GBR), Australia, were used to investigate how energy allocation between these fundamental processes varies as a function of age. Measurements of the relative growth, biochemical profiles, fecundity of individuals of different sizes, and the settlement success of their progeny have revealed physiological trade-offs between growth and reproduction, with increasing body mass ultimately leading to senescence. The importance of energy allocation for reproduction led us to examine the reproductive strategies and sex allocation in the two studied species. In the present study, the smallest individuals of both species studied were found to invest most of their energy in relative growth, showing higher lipid and carbohydrate content than the later stages. In medium-sized corals, this pattern was overturned in favour of reproduction, manifesting in terms of both the highest fecundity and settlement success of the resulting brooded larvae. Finally, a phase of apparent senescence was observed in the largest individuals, characterized by a decrease in most of the parameters measured. In addition, complex reproductive plasticity has been revealed in F. fungites in the GBR, with individual females releasing eggs, embryos, planulae, or a combination of these. These data provide the most direct estimates currently available for physiological, age-related trade-offs during the life history of a coral. The unusual reproductive characteristics of the GBR F. fungites indicate previously unknown layers of complexity in the reproductive biology of corals and have implications for their adaptive potential across a wide geographical scale.
AB - To compete effectively, living organisms must adjust the allocation of available energy resources for growth, survival, maintenance, and reproduction throughout their life histories. Energy demands and allocations change throughout the life history of an organism, and understanding their energy allocation strategies requires determination of the relative age of individuals. As most scleractinian corals are colonial, the relationship between age and mass/size is complicated by colony fragmentation, partial mortality, and asexual reproduction. To overcome these limitations, solitary mushroom corals, Herpolitha limax from Okinawa, Japan and Fungia fungites from Okinawa and the Great Barrier Reef (GBR), Australia, were used to investigate how energy allocation between these fundamental processes varies as a function of age. Measurements of the relative growth, biochemical profiles, fecundity of individuals of different sizes, and the settlement success of their progeny have revealed physiological trade-offs between growth and reproduction, with increasing body mass ultimately leading to senescence. The importance of energy allocation for reproduction led us to examine the reproductive strategies and sex allocation in the two studied species. In the present study, the smallest individuals of both species studied were found to invest most of their energy in relative growth, showing higher lipid and carbohydrate content than the later stages. In medium-sized corals, this pattern was overturned in favour of reproduction, manifesting in terms of both the highest fecundity and settlement success of the resulting brooded larvae. Finally, a phase of apparent senescence was observed in the largest individuals, characterized by a decrease in most of the parameters measured. In addition, complex reproductive plasticity has been revealed in F. fungites in the GBR, with individual females releasing eggs, embryos, planulae, or a combination of these. These data provide the most direct estimates currently available for physiological, age-related trade-offs during the life history of a coral. The unusual reproductive characteristics of the GBR F. fungites indicate previously unknown layers of complexity in the reproductive biology of corals and have implications for their adaptive potential across a wide geographical scale.
KW - Fungia fungites
KW - Herpolitha limax
KW - biochemical profiles
KW - fecundity
KW - reproductive allocation
KW - senescence
KW - sex-allocation
UR - http://www.scopus.com/inward/record.url?scp=85163731051&partnerID=8YFLogxK
U2 - 10.3389/fmars.2023.1113987
DO - 10.3389/fmars.2023.1113987
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85163731051
SN - 2296-7745
VL - 10
JO - Frontiers in Marine Science
JF - Frontiers in Marine Science
M1 - 1113987
ER -