Energetic Cocrystal, Ionic Salt, and Coordination Polymer of a Perchlorate Free High Energy Density Oxidizer: Influence of p Ka Modulation on Their Formation

Qing Ma, Shi Liang Huang, Huan Chang Lu, Fude Nie, Long Yu Liao*, Gui Juan Fan, Jing Lun Huang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Cocrystal, ionic salt, and coordination polymer had prompted the development of propellants, explosives, and pyrotechnics. However, the difference between their formation based on the same coformer has rarely been studied. 5,5′-Bis(trinitromethyl)-3,3′-bi-1H-1,2,4-triazole (BTNMBT) is perchlorate-free, favorable to scale-up, and a green energetic oxidizer with high physical performance (oxygen balance: +18.4%, IS: 22.5 J, FS: 252 N, D: 9073 m s-1, P: 36.2 GPa). To investigate the influence of different coformers on the formation of BTNMBT's cocrystal, ionic salt, and metal-organic framework, organic acid as well as organic and inorganic bases with different dissociation constants (pKa) were theoretically studied. In this work, two energetic cocrystals, energetic ionic salt, and energetic metal-organic framework were synthesized based on BTNMBT. For their formation, the basic principle is found as follows: (i) when the pKa value of organic base is far lower than both pKa values of hydrogen-protons in organic acid, the reaction systems are prone to forming cocrystals; (ii) if the pKa value of the selected organic base is higher than that of one of the hydrogen-protons in organic acid but lower than that of the other one, a 1:1 energetic ionic salt appears; (iii) the 1:2 type of energetic ionic salt (or coordination polymer) can form when the pKa value of corresponding base is higher than values of both hydrogen-protons in organic acid. Among these shapes of derivatives, the coordination polymer form of BTNMBT not only exhibits good detonation performance (D: 8872 m s-1), but also shows positive oxygen balance (+18.2%) and high thermal stability (Td: 180 °C) comparable to those of AP and superior to those of ADN. These discoveries can assist the design and preparation of other promising energetic materials toward future high-performing energy applications.

Original languageEnglish
Pages (from-to)714-723
Number of pages10
JournalCrystal Growth and Design
Volume19
Issue number2
DOIs
StatePublished - 6 Feb 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Energetic Cocrystal, Ionic Salt, and Coordination Polymer of a Perchlorate Free High Energy Density Oxidizer: Influence of p Ka Modulation on Their Formation'. Together they form a unique fingerprint.

Cite this