TY - JOUR
T1 - Endurance exercise and growth hormone improve bone formation in young and growth-retarded chronic kidney disease rats
AU - Troib, Ariel
AU - Guterman, Mayan
AU - Rabkin, Ralph
AU - Landau, Daniel
AU - Segev, Yael
N1 - Publisher Copyright:
© 2015 The Author 2015.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - Background Childhood chronic kidney disease (CKD) is associated with both short stature and abnormal bone mineralization. Normal longitudinal growth depends on proper maturation of epiphyseal growth plate (EGP) chondrocytes, leading to the formation of trabecular bone in the primary ossification centre. We have recently shown that linear growth impairment in CKD is associated with impaired EGP growth hormone (GH) receptor signalling and that exercise improved insulin-like growth factor I (IGF-I) signalling in CKD-related muscle atrophy. Methods In this study, 20-day-old rats underwent 5/6 nephrectomy (CKD) or sham surgery (C) and were exercised with treadmill, with or without GH supplementation. Results CKD-related growth retardation was associated with a widened EGP hypertrophic zone. This was not fully corrected by exercise (except for tibial length). Exercise in CKD improved the expression of EGP key factors of endochondral ossification such as IGF-I, vascular endothelial growth factor (VEGF), receptor activator of nuclear factor kappa-B ligand (RANKL) and osteocalcin. Combining GH treatment with treadmill exercise for 2 weeks improved the decreased trabecular bone volume in CKD, as well as the expression of growth plate runt-related transcription factor 2, RANKL, metalloproteinase 13 and VEGF, while GH treatment alone could not do that. Conclusions Treadmill exercise improves tibial bone linear growth, as well as growth plate local IGF-I. When combined with GH treatment, running exercise shows beneficial effects on trabecular bone formation, suggesting the potential benefit of this combination for CKD-related short stature and bone disease.
AB - Background Childhood chronic kidney disease (CKD) is associated with both short stature and abnormal bone mineralization. Normal longitudinal growth depends on proper maturation of epiphyseal growth plate (EGP) chondrocytes, leading to the formation of trabecular bone in the primary ossification centre. We have recently shown that linear growth impairment in CKD is associated with impaired EGP growth hormone (GH) receptor signalling and that exercise improved insulin-like growth factor I (IGF-I) signalling in CKD-related muscle atrophy. Methods In this study, 20-day-old rats underwent 5/6 nephrectomy (CKD) or sham surgery (C) and were exercised with treadmill, with or without GH supplementation. Results CKD-related growth retardation was associated with a widened EGP hypertrophic zone. This was not fully corrected by exercise (except for tibial length). Exercise in CKD improved the expression of EGP key factors of endochondral ossification such as IGF-I, vascular endothelial growth factor (VEGF), receptor activator of nuclear factor kappa-B ligand (RANKL) and osteocalcin. Combining GH treatment with treadmill exercise for 2 weeks improved the decreased trabecular bone volume in CKD, as well as the expression of growth plate runt-related transcription factor 2, RANKL, metalloproteinase 13 and VEGF, while GH treatment alone could not do that. Conclusions Treadmill exercise improves tibial bone linear growth, as well as growth plate local IGF-I. When combined with GH treatment, running exercise shows beneficial effects on trabecular bone formation, suggesting the potential benefit of this combination for CKD-related short stature and bone disease.
KW - Chronic kidney disease
KW - Endochondral ossification
KW - Endurance exercise
KW - Growth hormone treatment
KW - Growth retardation
UR - http://www.scopus.com/inward/record.url?scp=84982110292&partnerID=8YFLogxK
U2 - 10.1093/ndt/gfv373
DO - 10.1093/ndt/gfv373
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 26560811
AN - SCOPUS:84982110292
SN - 0931-0509
VL - 31
SP - 1270
EP - 1279
JO - Nephrology Dialysis Transplantation
JF - Nephrology Dialysis Transplantation
IS - 8
ER -