TY - GEN
T1 - End-to-End Segmentation of Medical Images via Patch-Wise Polygons Prediction
AU - Shaharabany, Tal
AU - Wolf, Lior
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - The leading medical image segmentation methods represent the output map as a pixel grid. We present an alternative in which the object edges are modeled, per image patch, as a polygon with k vertices that is coupled with per-patch label probabilities. The vertices are optimized by employing a differentiable neural renderer to create a raster image. The delineated region is then compared with the ground truth segmentation. Our method obtains multiple state-of-the-art results for the Gland segmentation dataset (Glas), the Nucleus challenges (MoNuSeg), and multiple polyp segmentation datasets, as well as for non-medical benchmarks, including Cityscapes, CUB, and Vaihingen. Our code for training and reproducing these results is attached as a supplement.
AB - The leading medical image segmentation methods represent the output map as a pixel grid. We present an alternative in which the object edges are modeled, per image patch, as a polygon with k vertices that is coupled with per-patch label probabilities. The vertices are optimized by employing a differentiable neural renderer to create a raster image. The delineated region is then compared with the ground truth segmentation. Our method obtains multiple state-of-the-art results for the Gland segmentation dataset (Glas), the Nucleus challenges (MoNuSeg), and multiple polyp segmentation datasets, as well as for non-medical benchmarks, including Cityscapes, CUB, and Vaihingen. Our code for training and reproducing these results is attached as a supplement.
UR - http://www.scopus.com/inward/record.url?scp=85139047095&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-16443-9_30
DO - 10.1007/978-3-031-16443-9_30
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85139047095
SN - 9783031164422
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 308
EP - 318
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
A2 - Wang, Linwei
A2 - Dou, Qi
A2 - Fletcher, P. Thomas
A2 - Speidel, Stefanie
A2 - Li, Shuo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Y2 - 18 September 2022 through 22 September 2022
ER -