TY - JOUR
T1 - Emergence of quasiperiodic Bloch wave functions in quasicrystals
AU - Lesser, Omri
AU - Lifshitz, Ron
N1 - Publisher Copyright:
© 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2022/3
Y1 - 2022/3
N2 - We study the emergence of quasiperiodic Bloch wave functions in quasicrystals, employing the one-dimensional Fibonacci model as a test case. We find that despite the fact that Bloch functions are not eigenfunctions themselves, superpositions of relatively small numbers of nearly degenerate eigenfunctions give rise to extended quasiperiodic Bloch functions. These functions possess the structure of earlier ancestors of the underlying Fibonacci potential, and it is often possible to obtain different ancestors as different superpositions around the same energy. There exists an effective crystal momentum that characterizes these ancestors, which is determined by the mean energy of the superimposed eigenfunctions, giving rise to an effective dispersion curve. We also find that quasiperiodic Bloch functions do emerge as eigenfunctions when weak disorder is introduced into the otherwise perfect quasiperiodic potential. These theoretical results may explain a number of experimental observations, and may have practical consequences on emerging theories of band topology and correlated electrons in quasicrystals.
AB - We study the emergence of quasiperiodic Bloch wave functions in quasicrystals, employing the one-dimensional Fibonacci model as a test case. We find that despite the fact that Bloch functions are not eigenfunctions themselves, superpositions of relatively small numbers of nearly degenerate eigenfunctions give rise to extended quasiperiodic Bloch functions. These functions possess the structure of earlier ancestors of the underlying Fibonacci potential, and it is often possible to obtain different ancestors as different superpositions around the same energy. There exists an effective crystal momentum that characterizes these ancestors, which is determined by the mean energy of the superimposed eigenfunctions, giving rise to an effective dispersion curve. We also find that quasiperiodic Bloch functions do emerge as eigenfunctions when weak disorder is introduced into the otherwise perfect quasiperiodic potential. These theoretical results may explain a number of experimental observations, and may have practical consequences on emerging theories of band topology and correlated electrons in quasicrystals.
UR - http://www.scopus.com/inward/record.url?scp=85128259181&partnerID=8YFLogxK
U2 - 10.1103/PhysRevResearch.4.013226
DO - 10.1103/PhysRevResearch.4.013226
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85128259181
SN - 2643-1564
VL - 4
JO - Physical Review Research
JF - Physical Review Research
IS - 1
M1 - 013226
ER -