Electric Analog Circuit Design with Hypernetworks and A Differential Simulator

Michael Rotman, Lior Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The manual design of analog circuits is a tedious task of parameter tuning that requires hours of work by human experts. In this work, we make a significant step towards a fully automatic design method that is based on deep learning. The method selects the components and their configuration, as well as their numerical parameters. By contrast, the current literature methods are limited to the parameter fitting part only. A two-stage network is used, which first generates a chain of circuit components and then predicts their parameters. A hypernetwork scheme is used in which a weight generating network, which is conditioned on the circuit's power spectrum, produces the parameters of a primal RNN network that places the components. A differential simulator is used for refining the numerical values of the components. We show that our model provides an efficient design solution, and is superior to alternative solutions.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4157-4161
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • Analog Circuits
  • Hypernetworks
  • Sequence Generation

Fingerprint

Dive into the research topics of 'Electric Analog Circuit Design with Hypernetworks and A Differential Simulator'. Together they form a unique fingerprint.

Cite this