TY - JOUR
T1 - Efficient randomized algorithms for some geometric optimization problems
AU - Agarwal, P. K.
AU - Sharir, M.
PY - 1996/12
Y1 - 1996/12
N2 - In this paper we first prove the following combinatorial bound, concerning the complexity of the vertical decomposition of the minimization diagram of trivariate functions: Let ℱ be a collection of n totally or partially defined algebraic trivariate functions of constant maximum degree, with the additional property that, for a given pair of functions f, f′ ∈ ℱ, the surface f(x, y, z) = f′(x, y, z) is xy-monotone (actually, we need a somewhat weaker property). We show that the vertical decomposition of the minimization diagram of ℱ consists of O(n3+ε) cells (each of constant description complexity), for any ε > 0. In the second part of the paper, we present a general technique that yields faster randomized algorithms for solving a number of geometric optimization problems, including (i) computing the width of a point set in 3-space, (ii) computing the minimum-width annulus enClosing a set of n Points in the plane, and (iii) computing the "biggest stick" inside a simple polygon in the plane. Using the above result on vertical decompositions, we show that the expected running time of all three algorithms is O(n3/2+ε), for any ε > 0. Our algorithm improves and simplifies previous solutions of all three problems.
AB - In this paper we first prove the following combinatorial bound, concerning the complexity of the vertical decomposition of the minimization diagram of trivariate functions: Let ℱ be a collection of n totally or partially defined algebraic trivariate functions of constant maximum degree, with the additional property that, for a given pair of functions f, f′ ∈ ℱ, the surface f(x, y, z) = f′(x, y, z) is xy-monotone (actually, we need a somewhat weaker property). We show that the vertical decomposition of the minimization diagram of ℱ consists of O(n3+ε) cells (each of constant description complexity), for any ε > 0. In the second part of the paper, we present a general technique that yields faster randomized algorithms for solving a number of geometric optimization problems, including (i) computing the width of a point set in 3-space, (ii) computing the minimum-width annulus enClosing a set of n Points in the plane, and (iii) computing the "biggest stick" inside a simple polygon in the plane. Using the above result on vertical decompositions, we show that the expected running time of all three algorithms is O(n3/2+ε), for any ε > 0. Our algorithm improves and simplifies previous solutions of all three problems.
UR - http://www.scopus.com/inward/record.url?scp=0030523138&partnerID=8YFLogxK
U2 - 10.1007/BF02712871
DO - 10.1007/BF02712871
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0030523138
SN - 0179-5376
VL - 16
SP - 317
EP - 337
JO - Discrete and Computational Geometry
JF - Discrete and Computational Geometry
IS - 4
ER -