TY - JOUR
T1 - Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques
AU - Nussinov, R.
AU - Wolfson, H. J.
PY - 1991
Y1 - 1991
N2 - Macromolecules carrying biological information often consist of independent modules containing recurring structural motifs. Detection of a specific structural motif within a protein (or DNA) aids in elucidating the role played by the protein (DNA element) and the mechanism of its operation. The number of crystallographically known structures at high resolution is increasing very rapidly. Yet, comparison of three-dimensional structures is a laborious time-consuming procedure that typically requires a manual phase. To date, there is no fast automated procedure for structural comparisons. We present an efficient O(n3) worst case time complexity algorithm for achieving such a goal (where n is the number of atoms in the examined structure). The method is truly three-dimensional, sequence-order- independent, and thus insensitive to gaps, insertions, or deletions. This algorithm is based on the geometric hashing paradigm, which was originally developed for object recognition problems in computer vision. It introduces an indexing approach based on transformation invariant representations and is especially geared toward efficient recognition of partial structures in rigid objects belonging to large data bases. This algorithm is suitable for quick scanning of structural data bases and will detect a recurring structural motif that is a priori unknown. The algorithm uses protein (or DNA) structures, atomic labels, and their three-dimensional coordinates. Additional information pertaining to the structure speeds the comparisons. The algorithm is straightforwardly parallelizable, and several versions of it for computer vision applications have been implemented on the massively parallel connection machine. A prototype version of the algorithm has been implemented and applied to the detection of substructures in proteins.
AB - Macromolecules carrying biological information often consist of independent modules containing recurring structural motifs. Detection of a specific structural motif within a protein (or DNA) aids in elucidating the role played by the protein (DNA element) and the mechanism of its operation. The number of crystallographically known structures at high resolution is increasing very rapidly. Yet, comparison of three-dimensional structures is a laborious time-consuming procedure that typically requires a manual phase. To date, there is no fast automated procedure for structural comparisons. We present an efficient O(n3) worst case time complexity algorithm for achieving such a goal (where n is the number of atoms in the examined structure). The method is truly three-dimensional, sequence-order- independent, and thus insensitive to gaps, insertions, or deletions. This algorithm is based on the geometric hashing paradigm, which was originally developed for object recognition problems in computer vision. It introduces an indexing approach based on transformation invariant representations and is especially geared toward efficient recognition of partial structures in rigid objects belonging to large data bases. This algorithm is suitable for quick scanning of structural data bases and will detect a recurring structural motif that is a priori unknown. The algorithm uses protein (or DNA) structures, atomic labels, and their three-dimensional coordinates. Additional information pertaining to the structure speeds the comparisons. The algorithm is straightforwardly parallelizable, and several versions of it for computer vision applications have been implemented on the massively parallel connection machine. A prototype version of the algorithm has been implemented and applied to the detection of substructures in proteins.
KW - crystallographic coordinates
KW - efficient computer vision algorithm
KW - macromolecular structure analysis
KW - three-dimensional structural comparison
UR - http://www.scopus.com/inward/record.url?scp=0025719208&partnerID=8YFLogxK
U2 - 10.1073/pnas.88.23.10495
DO - 10.1073/pnas.88.23.10495
M3 - מאמר
C2 - 1961713
AN - SCOPUS:0025719208
VL - 88
SP - 10495
EP - 10499
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 23
ER -