Theoretical demonstration of efficient coupling and power concentration of radially-polarized light on a conical tip of plasmonic needle is presented. The metallic needle is grown at the center of radial plasmonic grating, engraved in a metal surface. The electromagnetic field distribution was evaluated by Finite Elements and Finite-Difference-Time-Domain methods. The results show that the field on the tip of the needle is significantly enhanced compared to the field impinging on the grating. The power enhancement exhibited a resonant behavior as a function of needle length and reached values of ∼104. Test samples for few types of characterization schemes were fabricated.