Efficiency fluctuations in quantum thermoelectric devices

Massimiliano Esposito, Maicol A. Ochoa, Michael Galperin

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

We present a method, based on characterizing efficiency fluctuations, to assess the performance of nanoscale thermoelectric junctions. This method accounts for effects typically arising in small junctions, namely, stochasticity in the junction's performance, quantum effects, and nonequilibrium features preventing a linear response analysis. It is based on a nonequilibrium Green's function (NEGF) approach, which we use to derive the full counting statistics (FCS) for heat and work, and which in turn allows us to calculate the statistical properties of efficiency fluctuations. We simulate the latter for a variety of simple models where our method is exact. By analyzing the discrepancies with the semiclassical prediction of a quantum master equation (QME) approach, we emphasize the quantum nature of efficiency fluctuations for realistic junction parameters. We finally propose an approximate Gaussian method to express efficiency fluctuations in terms of nonequilibrium currents and noises which are experimentally measurable in molecular junctions.

Original languageEnglish
Article number115417
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume91
Issue number11
DOIs
StatePublished - 12 Mar 2015
Externally publishedYes

Funding

FundersFunder number
Fonds National de la Recherche LuxembourgFNR/A11/02
U.S. Department of EnergyDE-SC0006422

    Fingerprint

    Dive into the research topics of 'Efficiency fluctuations in quantum thermoelectric devices'. Together they form a unique fingerprint.

    Cite this