TY - JOUR
T1 - Effects of MF-tricyclic, a selective cyclooxygenase-2 inhibitor, on atherosclerosis progression and susceptibility to cytomegalovirus replication in apolipoprotein-E knockout mice
AU - Rott, David
AU - Zhu, Jianhui
AU - Burnett, Mary Susan
AU - Zhou, Yi Fu
AU - Zalles-Ganley, Alexandra
AU - Ogunmakinwa, Jibike
AU - Epstein, Stephen E.
N1 - Funding Information:
This work was supported in part by a grant from Merck Pharmaceuticals.
PY - 2003/5/21
Y1 - 2003/5/21
N2 - OBJECTIVES: We examined whether selective cyclooxygenase-2 (COX-2) inhibition in apolipoprotein-E (apoE) deficient mice reduces cytomegalovirus (CMV) replication, and determined whether COX-2 anti-inflammatory activity leads to decreased atherosclerosis. BACKGROUND: Evidence suggests that CMV infection contributes to atherosclerosis and that this occurs in part through inflammatory mechanisms. Cyclooxygenase-2 inhibitors are potent anti-inflammatory agents. They also inhibit CMV replication in vitro. METHODS: The apoE deficient mice were either treated or not treated with a selective COX-2 inhibitor, and either infected or not infected with CMV. Viral deoxyribonucleic acid load in salivary glands was determined by quantitative polymerase chain reaction. Atherosclerotic lesion analysis was performed by standard methods. RESULTS: In vivo COX-2 inhibition, unexpectedly increased viral load: in the CMV-infected animals viral load was 2.58 ± 1.0 in the nontreated group, 4.74 ± 1.38 in the group treated with 12 mg/kg/day MF-tricyclic, and 6.51 ± 1.64 in the group treated with 24 mg/kg/day MF-tricyclic (p trend = 0.050). This increased viral load was paralleled by increased anti-CMV antibody titers. Most surprisingly, COX-2 inhibition significantly increased early atherosclerotic lesion area, independent of viral infection. CONCLUSIONS: Our study demonstrates that selective inhibition of COX-2 in vivo increases viral load. The finding that inhibition of COX-2 increases atherosclerosis development in apoE deficient mice suggests, unexpectedly, that this enzyme exerts antiatherosclerosis activity, at least in this model.
AB - OBJECTIVES: We examined whether selective cyclooxygenase-2 (COX-2) inhibition in apolipoprotein-E (apoE) deficient mice reduces cytomegalovirus (CMV) replication, and determined whether COX-2 anti-inflammatory activity leads to decreased atherosclerosis. BACKGROUND: Evidence suggests that CMV infection contributes to atherosclerosis and that this occurs in part through inflammatory mechanisms. Cyclooxygenase-2 inhibitors are potent anti-inflammatory agents. They also inhibit CMV replication in vitro. METHODS: The apoE deficient mice were either treated or not treated with a selective COX-2 inhibitor, and either infected or not infected with CMV. Viral deoxyribonucleic acid load in salivary glands was determined by quantitative polymerase chain reaction. Atherosclerotic lesion analysis was performed by standard methods. RESULTS: In vivo COX-2 inhibition, unexpectedly increased viral load: in the CMV-infected animals viral load was 2.58 ± 1.0 in the nontreated group, 4.74 ± 1.38 in the group treated with 12 mg/kg/day MF-tricyclic, and 6.51 ± 1.64 in the group treated with 24 mg/kg/day MF-tricyclic (p trend = 0.050). This increased viral load was paralleled by increased anti-CMV antibody titers. Most surprisingly, COX-2 inhibition significantly increased early atherosclerotic lesion area, independent of viral infection. CONCLUSIONS: Our study demonstrates that selective inhibition of COX-2 in vivo increases viral load. The finding that inhibition of COX-2 increases atherosclerosis development in apoE deficient mice suggests, unexpectedly, that this enzyme exerts antiatherosclerosis activity, at least in this model.
UR - http://www.scopus.com/inward/record.url?scp=0038662737&partnerID=8YFLogxK
U2 - 10.1016/S0735-1097(03)00304-8
DO - 10.1016/S0735-1097(03)00304-8
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12767669
AN - SCOPUS:0038662737
SN - 0735-1097
VL - 41
SP - 1812
EP - 1819
JO - Journal of the American College of Cardiology
JF - Journal of the American College of Cardiology
IS - 10
ER -