Effective model for a short Josephson junction with a phase discontinuity

E. Goldobin, S. Mironov, A. Buzdin, R. G. Mints, D. Koelle, R. Kleiner

Research output: Contribution to journalArticlepeer-review


We consider a short Josephson junction with a phase discontinuity κ created, e.g., by a pair of tiny current injectors, at some point x0 along the width of the junction. We derive the effective current-phase relation (CPR) for the system as a whole, i.e., reduce it to an effective pointlike junction. From the effective CPR we obtain the ground state of the system and predict the dependence of its critical current on κ. We show that in a large range of κ values the effective junction behaves as a φ0 Josephson junction, i.e., has a unique ground state phase φ0 within each 2π interval. For κ≈π and x0 near the middle of the junction one obtains a φ0±φ junction, i.e., a Josephson junction with degenerate ground state phase φ0±φ within each 2π interval. Further, in view of possible escape experiments especially in the quantum domain, we investigate the scaling of the energy barrier and eigenfrequency close to the critical currents and predict the behavior of the escape histogram width σ(κ) in the regime of the macroscopic quantum tunneling.

Original languageEnglish
Article number134514
JournalPhysical Review B
Issue number13
StatePublished - 25 Apr 2016


Dive into the research topics of 'Effective model for a short Josephson junction with a phase discontinuity'. Together they form a unique fingerprint.

Cite this