TY - JOUR
T1 - Effect of the VKORC1 D36Y variant on warfarin dose requirement and pharmacogenetic dose prediction
AU - Kurnik, Daniel
AU - Qasim, Husam
AU - Sominsky, Sophie
AU - Lubetsky, Aharon
AU - Markovits, Noa
AU - Li, Chun
AU - Michael Stein, C.
AU - Halkin, Hillel
AU - Gak, Eva
AU - Loebstein, Ronen
PY - 2012/9
Y1 - 2012/9
N2 - Pharmacogenetic dosing algorithms help predict warfarin maintenance doses, but their predictive performance differs in different populations, possibly due to unsuspected population-specific genetic variants. The objectives of this study were to quantify the effect of the VKORC1 D36Y variant (a marker of warfarin resistance previously described in 4% of Ashkenazi Jews) on warfarin maintenance doses and to examine how this variant affects the performance of the International Warfarin Pharmacogenetic Consortium (IWPC) dose prediction model. In 210 Israeli patients on chronic warfarin therapy recruited at a tertiary care centre, we applied the IWPC model and then added D36Y genotype as covariate to the model (IWPC+D36Y) and compared predicted with actual doses. Median weekly warfarin dose was 35 mg (interquartile range [IQR], 24.5 to 52.5 mg). Among 16 heterozygous D36Y carriers (minor allele frequency = 3.8%), warfarin weekly dose was increased by a median of 43.7 mg (IQR, 40.5 to 47.2 mg) compared to non-carriers after adjustment for all IWPC parameters, a greater than two-fold dose increase. The IWPC model performed suboptimally (coefficient of determination R2=27.0%; mean absolute error (MAE), 14.4 ± 16.2 mg/ week). Accounting for D36Y genotype using the IWPC+D36Y model resulted in a significantly better model performance (R2=47.2%, MAE=12.6±12.4 mg/week). In conclusion, even at low frequencies, variants with a strong impact on warfarin dose may greatly decrease the performance of a commonly used dose prediction model. Unexpected discrepancies of the performance of universal prediction models in subpopulations should prompt searching for unsuspected confounders, including rare genetic variants.
AB - Pharmacogenetic dosing algorithms help predict warfarin maintenance doses, but their predictive performance differs in different populations, possibly due to unsuspected population-specific genetic variants. The objectives of this study were to quantify the effect of the VKORC1 D36Y variant (a marker of warfarin resistance previously described in 4% of Ashkenazi Jews) on warfarin maintenance doses and to examine how this variant affects the performance of the International Warfarin Pharmacogenetic Consortium (IWPC) dose prediction model. In 210 Israeli patients on chronic warfarin therapy recruited at a tertiary care centre, we applied the IWPC model and then added D36Y genotype as covariate to the model (IWPC+D36Y) and compared predicted with actual doses. Median weekly warfarin dose was 35 mg (interquartile range [IQR], 24.5 to 52.5 mg). Among 16 heterozygous D36Y carriers (minor allele frequency = 3.8%), warfarin weekly dose was increased by a median of 43.7 mg (IQR, 40.5 to 47.2 mg) compared to non-carriers after adjustment for all IWPC parameters, a greater than two-fold dose increase. The IWPC model performed suboptimally (coefficient of determination R2=27.0%; mean absolute error (MAE), 14.4 ± 16.2 mg/ week). Accounting for D36Y genotype using the IWPC+D36Y model resulted in a significantly better model performance (R2=47.2%, MAE=12.6±12.4 mg/week). In conclusion, even at low frequencies, variants with a strong impact on warfarin dose may greatly decrease the performance of a commonly used dose prediction model. Unexpected discrepancies of the performance of universal prediction models in subpopulations should prompt searching for unsuspected confounders, including rare genetic variants.
KW - Dose prediction
KW - Ethnicity
KW - Pharmacogenetics
KW - VKORC1
KW - Warfarin
UR - http://www.scopus.com/inward/record.url?scp=84867263459&partnerID=8YFLogxK
U2 - 10.1160/TH12-03-0151
DO - 10.1160/TH12-03-0151
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84867263459
SN - 0340-6245
VL - 108
SP - 781
EP - 788
JO - Thrombosis and Haemostasis
JF - Thrombosis and Haemostasis
IS - 4
ER -