Abstract
The effect of light scattering on measurement of UV absorbance and penetration of germicidal UVC irradiance in a UV reactor were studied. Using a standard spectrophotometer, absorbance measurements exhibited significant error when particles that scatter light were present but could be corrected by integrating sphere spectroscopy. Particles from water treatment plants and wastewater effluents exhibited less scattering (20%-30%) compared with particles such as clay (50%) and alumina (95%-100%). The distribution of light intensity in a UV reactor for a scattering suspension was determined using a spherical chemical actinometry method. Highly scattering alumina particles increased the fluence rate in the reactor near the UV lamp, whereas clay particles and absorbing organic matter reduced the fluence rate. A radiative transfer fluence rate model reasonably predicted the fluence rate of absorbing media and highly scattering suspensions in the UV reactor.
Original language | English |
---|---|
Pages (from-to) | 1844-1856 |
Number of pages | 13 |
Journal | Applied Optics |
Volume | 45 |
Issue number | 8 |
DOIs | |
State | Published - 10 Mar 2006 |