Abstract
Epitaxial FePt(001)/MgO/FePt magnetic tunnel junctions with L10-FePt electrodes showing perpendicular magnetic anisotropy were fabricated by molecular beam epitaxial growth. Tunnel magnetoresistance ratios of 21% and 53% were obtained at 300 K and 10 K, respectively. Our previous work, based on transmission electron microscopy, confirmed a semi-coherent interfacial structure with atomic steps (Kohn et al., APL 102, 062403 (2013)). Here, we show by x-ray photoemission spectroscopy and first-principles calculation that the bottom FePt/MgO interface is either Pt-terminated for regular growth or when an Fe layer is inserted at the interface, it is chemically bonded to O. Both these structures have a dominant role in spin dependent tunneling across the MgO barrier resulting in a decrease of the tunneling magnetoresistance ratio compared with previous predictions.
Original language | English |
---|---|
Article number | 083904 |
Journal | Journal of Applied Physics |
Volume | 117 |
Issue number | 8 |
DOIs | |
State | Published - 28 Feb 2015 |
Externally published | Yes |