TY - JOUR
T1 - Edge chipping patterns in posterior teeth of hominins and apes
AU - Chai, Herzl
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/8
Y1 - 2024/8
N2 - Chip scars in fossil teeth are a lasting evidence that bears on human evolution. Chip dimensions in posterior teeth of hominins, apes and white-lipped peccary (Tayassu pecari) are measured from published occlusal images. The results are plotted as D/Dm vs. h/Dm, where h, D and Dm denote indent distance, chip width and mean tooth crown diameter. The hominin species follow a similar pattern where D/Dm monotonically increases up to h/Dm ≈ 0.3. The behavior for the apes is characterized by two phases. In the first, h/Dm monotonically increases up to h/Dm ≈ 0.26 while in the second (h/Dm ≈ 0.26 to 0.42), D/Dm experiences a drastic change in behavior. The interpretation of chip morphology is assisted by results from controlled spherical indentation tests on extracted human molars. This study shows that in addition to the commonly recognized chipping due to cusp loading, a chip may also initiate from the inner wall of the tooth's central fossa. Accordingly, it is suggested that the chipping in hominins generally initiates from a (worn) cusp while that in apes involves cusp loading up to h/Dm ≈ 0.26 and fossa loading thereafter. The behavior for T. pecari is much similar to that of the apes. The fossa chipping is facilitated by a consumption of hard, large-size diet (e.g., plants, roots, barks and nuts) and presence of broad central fossa, conditions that are met in apes. Finally, a simple expression for the critical chipping force Pch due to fossa loading is developed.
AB - Chip scars in fossil teeth are a lasting evidence that bears on human evolution. Chip dimensions in posterior teeth of hominins, apes and white-lipped peccary (Tayassu pecari) are measured from published occlusal images. The results are plotted as D/Dm vs. h/Dm, where h, D and Dm denote indent distance, chip width and mean tooth crown diameter. The hominin species follow a similar pattern where D/Dm monotonically increases up to h/Dm ≈ 0.3. The behavior for the apes is characterized by two phases. In the first, h/Dm monotonically increases up to h/Dm ≈ 0.26 while in the second (h/Dm ≈ 0.26 to 0.42), D/Dm experiences a drastic change in behavior. The interpretation of chip morphology is assisted by results from controlled spherical indentation tests on extracted human molars. This study shows that in addition to the commonly recognized chipping due to cusp loading, a chip may also initiate from the inner wall of the tooth's central fossa. Accordingly, it is suggested that the chipping in hominins generally initiates from a (worn) cusp while that in apes involves cusp loading up to h/Dm ≈ 0.26 and fossa loading thereafter. The behavior for T. pecari is much similar to that of the apes. The fossa chipping is facilitated by a consumption of hard, large-size diet (e.g., plants, roots, barks and nuts) and presence of broad central fossa, conditions that are met in apes. Finally, a simple expression for the critical chipping force Pch due to fossa loading is developed.
KW - Apes
KW - Chipping analysi
KW - Diet
KW - Edge chipping
KW - Fossil teeth
KW - Hominins
UR - http://www.scopus.com/inward/record.url?scp=85193589800&partnerID=8YFLogxK
U2 - 10.1016/j.jmbbm.2024.106582
DO - 10.1016/j.jmbbm.2024.106582
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 38781774
AN - SCOPUS:85193589800
SN - 1751-6161
VL - 156
JO - Journal of the Mechanical Behavior of Biomedical Materials
JF - Journal of the Mechanical Behavior of Biomedical Materials
M1 - 106582
ER -