Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases

Robbin Romijnders*, Francesca Salis, Clint Hansen, Arne Küderle, Anisoara Paraschiv-Ionescu, Andrea Cereatti, Lisa Alcock, Kamiar Aminian, Clemens Becker, Stefano Bertuletti, Tecla Bonci, Philip Brown, Ellen Buckley, Alma Cantu, Anne Elie Carsin, Marco Caruso, Brian Caulfield, Lorenzo Chiari, Ilaria D'Ascanio, Silvia Del DinBjörn Eskofier, Sara Johansson Fernstad, Marceli Stanislaw Fröhlich, Judith Garcia Aymerich, Eran Gazit, Jeffrey M. Hausdorff, Hugo Hiden, Emily Hume, Alison Keogh, Cameron Kirk, Felix Kluge, Sarah Koch, Claudia Mazzà, Dimitrios Megaritis, Encarna Micó-Amigo, Arne Müller, Luca Palmerini, Lynn Rochester, Lars Schwickert, Kirsty Scott, Basil Sharrack, David Singleton, Abolfazl Soltani, Martin Ullrich, Beatrix Vereijken, Ioannis Vogiatzis, Alison Yarnall, Gerhard Schmidt, Walter Maetzler

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Fingerprint

Dive into the research topics of 'Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases'. Together they form a unique fingerprint.

Keyphrases

Engineering

Immunology and Microbiology

Earth and Planetary Sciences

Pharmacology, Toxicology and Pharmaceutical Science