TY - JOUR
T1 - Early Feasibility of Automated Artificial Intelligence Angiography Based Fractional Flow Reserve Estimation
AU - Roguin, Ariel
AU - Abu Dogosh, Ala
AU - Feld, Yair
AU - Konigstein, Maayan
AU - Lerman, Amir
AU - Koifman, Edward
N1 - Publisher Copyright:
© 2020 Elsevier Inc.
PY - 2021/1/15
Y1 - 2021/1/15
N2 - Despite the evidence of improved patients' outcome, fractional flow reserve (FFR) is underused in current everyday practice. We aimed to evaluate the feasibility of a novel automated artificial intelligence angiography-based FFR software (AutocathFFR) as a decision supporting tool for interventional cardiologists. AutocathFFR was performed on angiographic images of patients who underwent coronary angiography with a pressure wire FFR measurement. Sensitivity and specificity for detection of FFR cut-off of 0.8 were calculated. Thirty-one patients were included in the present study, with a mean age of 64 ± 10 years, 80% were males, 32% patients had diabetes, 39% had previous percutaneous coronary intervention. The left anterior descending artery was the target vessel in 80% of patients. Automatic lesion detection was successful in all of the lesions with FFR value of ≤0.8. The sensitivity of AutocathFFR for predicting a wire based FFR ≤0.8 was 88% and the specificity for FFR >0.8 was 93%, with a positive predictive value of 94% and negative predictive value of 87%, indicating an accuracy level of 90% and area under the curve of 0.91. AutocathFFR has excellent accuracy in prediction of wire based FFR and is a promising technology that may facilitate appropriate decision and treatment choices for coronary artery disease patients.
AB - Despite the evidence of improved patients' outcome, fractional flow reserve (FFR) is underused in current everyday practice. We aimed to evaluate the feasibility of a novel automated artificial intelligence angiography-based FFR software (AutocathFFR) as a decision supporting tool for interventional cardiologists. AutocathFFR was performed on angiographic images of patients who underwent coronary angiography with a pressure wire FFR measurement. Sensitivity and specificity for detection of FFR cut-off of 0.8 were calculated. Thirty-one patients were included in the present study, with a mean age of 64 ± 10 years, 80% were males, 32% patients had diabetes, 39% had previous percutaneous coronary intervention. The left anterior descending artery was the target vessel in 80% of patients. Automatic lesion detection was successful in all of the lesions with FFR value of ≤0.8. The sensitivity of AutocathFFR for predicting a wire based FFR ≤0.8 was 88% and the specificity for FFR >0.8 was 93%, with a positive predictive value of 94% and negative predictive value of 87%, indicating an accuracy level of 90% and area under the curve of 0.91. AutocathFFR has excellent accuracy in prediction of wire based FFR and is a promising technology that may facilitate appropriate decision and treatment choices for coronary artery disease patients.
UR - http://www.scopus.com/inward/record.url?scp=85095413560&partnerID=8YFLogxK
U2 - 10.1016/j.amjcard.2020.10.022
DO - 10.1016/j.amjcard.2020.10.022
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 33058806
AN - SCOPUS:85095413560
SN - 0002-9149
VL - 139
SP - 8
EP - 14
JO - American Journal of Cardiology
JF - American Journal of Cardiology
ER -