Dynamic matching: Reducing integral algorithms to approximately-maximal fractional algorithms

Moab Arar, Shiri Chechik, Sarel Cohen, Cli Stein, David Wajc

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present a simple randomized reduction from fully-dynamic integral matching algorithms to fully-dynamic “approximately-maximal” fractional matching algorithms. Applying this reduction to the recent fractional matching algorithm of Bhattacharya, Henzinger, and Nanongkai (SODA 2017), we obtain a novel result for the integral problem. Specifically, our main result is a randomized fully-dynamic (2 + )-approximate integral matching algorithm with small polylog worst-case update time. For the (2 + )-approximation regime only a fractional fully-dynamic (2 + )-matching algorithm with worst-case polylog update time was previously known, due to Bhattacharya et al. (SODA 2017). Our algorithm is the first algorithm that maintains approximate matchings with worst-case update time better than polynomial, for any constant approximation ratio. As a consequence, we also obtain the first constant-approximate worst-case polylogarithmic update time maximum weight matching algorithm.

Original languageEnglish
Title of host publication45th International Colloquium on Automata, Languages, and Programming, ICALP 2018
EditorsChristos Kaklamanis, Daniel Marx, Ioannis Chatzigiannakis, Donald Sannella
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959770767
DOIs
StatePublished - 1 Jul 2018
Event45th International Colloquium on Automata, Languages, and Programming, ICALP 2018 - Prague, Czech Republic
Duration: 9 Jul 201813 Jul 2018

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume107
ISSN (Print)1868-8969

Conference

Conference45th International Colloquium on Automata, Languages, and Programming, ICALP 2018
Country/TerritoryCzech Republic
CityPrague
Period9/07/1813/07/18

Keywords

  • Maximum Matching
  • Maximum Weight Matching
  • Phrases Dynamic
  • Worst-case

Fingerprint

Dive into the research topics of 'Dynamic matching: Reducing integral algorithms to approximately-maximal fractional algorithms'. Together they form a unique fingerprint.

Cite this