TY - GEN
T1 - Dynamic algorithms against an adaptive adversary
T2 - 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022
AU - Beimel, Amos
AU - Kaplan, Haim
AU - Mansour, Yishay
AU - Nissim, Kobbi
AU - Saranurak, Thatchaphol
AU - Stemmer, Uri
N1 - Publisher Copyright:
© 2022 ACM.
PY - 2022/9/6
Y1 - 2022/9/6
N2 - Given an input that undergoes a sequence of updates, a dynamic algorithm maintains a valid solution to some predefined problem at any point in time; the goal is to design an algorithm in which computing a solution to the updated input is done more efficiently than computing the solution from scratch. A dynamic algorithm against an adaptive adversary is required to be correct when the adversary chooses the next update after seeing the previous outputs of the algorithm. We obtain faster dynamic algorithms against an adaptive adversary and separation results between what is achievable in the oblivious vs. adaptive settings. To get these results we exploit techniques from differential privacy, cryptography, and adaptive data analysis. Our results are as follows. 1. We give a general reduction transforming a dynamic algorithm against an oblivious adversary to a dynamic algorithm robust against an adaptive adversary. This reduction maintains several copies of the oblivious algorithm and uses differential privacy to protect their random bits. Using this reduction we obtain dynamic algorithms against an adaptive adversary with improved update and query times for global minimum cut, all pairs distances, and all pairs effective resistance. 2. We further improve our update and query times by showing how to maintain a sparsifier over an expander decomposition that can be refreshed fast. This fast refresh enables it to be robust against what we call a blinking adversary that can observe the output of the algorithm only following refreshes. We believe that these techniques will prove useful for additional problems. 3. On the flip side, we specify dynamic problems that, assuming a random oracle, every dynamic algorithm that solves them against an adaptive adversary must be polynomially slower than a rather straightforward dynamic algorithm that solves them against an oblivious adversary. We first show a separation result for a search problem and then show a separation result for an estimation problem. In the latter case our separation result draws from lower bounds in adaptive data analysis.
AB - Given an input that undergoes a sequence of updates, a dynamic algorithm maintains a valid solution to some predefined problem at any point in time; the goal is to design an algorithm in which computing a solution to the updated input is done more efficiently than computing the solution from scratch. A dynamic algorithm against an adaptive adversary is required to be correct when the adversary chooses the next update after seeing the previous outputs of the algorithm. We obtain faster dynamic algorithms against an adaptive adversary and separation results between what is achievable in the oblivious vs. adaptive settings. To get these results we exploit techniques from differential privacy, cryptography, and adaptive data analysis. Our results are as follows. 1. We give a general reduction transforming a dynamic algorithm against an oblivious adversary to a dynamic algorithm robust against an adaptive adversary. This reduction maintains several copies of the oblivious algorithm and uses differential privacy to protect their random bits. Using this reduction we obtain dynamic algorithms against an adaptive adversary with improved update and query times for global minimum cut, all pairs distances, and all pairs effective resistance. 2. We further improve our update and query times by showing how to maintain a sparsifier over an expander decomposition that can be refreshed fast. This fast refresh enables it to be robust against what we call a blinking adversary that can observe the output of the algorithm only following refreshes. We believe that these techniques will prove useful for additional problems. 3. On the flip side, we specify dynamic problems that, assuming a random oracle, every dynamic algorithm that solves them against an adaptive adversary must be polynomially slower than a rather straightforward dynamic algorithm that solves them against an oblivious adversary. We first show a separation result for a search problem and then show a separation result for an estimation problem. In the latter case our separation result draws from lower bounds in adaptive data analysis.
KW - Dynamic algorithms
KW - adaptive adversaries
KW - differential privacy
UR - http://www.scopus.com/inward/record.url?scp=85132745463&partnerID=8YFLogxK
U2 - 10.1145/3519935.3520064
DO - 10.1145/3519935.3520064
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85132745463
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 1671
EP - 1684
BT - STOC 2022 - Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
A2 - Leonardi, Stefano
A2 - Gupta, Anupam
PB - Association for Computing Machinery
Y2 - 20 June 2022 through 24 June 2022
ER -