Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints

Haniel Gabai, Natan T. Shaked

Research output: Contribution to journalArticlepeer-review

Abstract

We introduce an off-axis, wide-field, low-coherence and dual-channel interferometric imaging system, which is based on a simple-to-align, common-path interferometer. The system requires no optical-path-difference matching between the interferometric arms in order to obtain interference with low-coherence light source, and is capable of achieving two channels of off-axis interference with high spatial frequency. The two 180°-phase-shifted interferograms are acquired simultaneously using a single digital camera, and processed into a single, noise-reduced and DC-suppressed interferogram. We demonstrate using the proposed system for phase imaging of fingerprint templates. Due to the fact that conventional phase unwrapping algorithms cannot handle the complex and deep surface topography imposed by fingerprint templates, we experimentally implemented two-wavelength phase unwrapping using a supercontinuum laser coupled to acousto-optical tunable filter, together functioning as a low-coherence tunable light source. From the unwrapped phase map, we produced high quality depth profiles of fingerprint templates. We introduce an off-axis, wide-field, low-coherence and dual-channel interferometric imaging system, which is based on a simple-to-align, common-path interferometer. The system requires no optical-path-difference matching between the interferometric arms in order to obtain interference with low-coherence light source, and is capable of achieving two channels of off-axis interference with high spatial frequency. The two 180°-phase-shifted interferograms are acquired simultaneously using a single digital camera, and processed into a single, noise-reduced and DC-suppressed interferogram. We demonstrate using the proposed system for phase imaging of fingerprint templates. Due to the fact that conventional phase unwrapping algorithms cannot handle the complex and deep surface topography imposed by fingerprint templates, we experimentally implemented two-wavelength phase unwrapping using a supercontinuum laser coupled to acousto-optical tunable filter, together functioning as a low-coherence tunable light source. From the unwrapped phase map, we produced high quality depth profiles of fingerprint templates.

Original languageEnglish
Pages (from-to)26906-26912
Number of pages7
JournalOptics Express
Volume20
Issue number24
DOIs
StatePublished - 19 Nov 2012

Fingerprint

Dive into the research topics of 'Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints'. Together they form a unique fingerprint.

Cite this