Dopamine, salience, and response set shifting in prefrontal cortex

T. Shiner, M. Symmonds*, M. Guitart-Masip, S. M. Fleming, K. J. Friston, R. J. Dolan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Dopamine is implicated in multiple functions, including motor execution, action learning for hedonically salient outcomes, maintenance, and switching of behavioral response set. Here, we used a novel within-subject psychopharmacological and combined functional neuroimaging paradigm, investigating the interaction between hedonic salience, dopamine, and response set shifting, distinct from effects on action learning or motor execution. We asked whether behavioral performance in response set shifting depends on the hedonic salience of reversal cues, by presenting these as null (neutral) or salient (monetary loss) outcomes. We observed marked effects of reversal cue salience on set-switching, with more efficient reversals following salient loss outcomes. L-Dopa degraded this discrimination, leading to inappropriate perseveration. Generic activation in thalamus, insula, and striatum preceded response set switches, with an opposite pattern in ventromedial prefrontal cortex (vmPFC). However, the behavioral effect of hedonic salience was reflected in differential vmPFC deactivation following salient relative to null reversal cues. L-Dopa reversed this pattern in vmPFC, suggesting that its behavioral effects are due to disruption of the stability and switching of firing patterns in prefrontal cortex. Our findings provide a potential neurobiological explanation for paradoxical phenomena, including maintenance of behavioral set despite negative outcomes, seen in impulse control disorders in Parkinson's disease.

Original languageEnglish
Pages (from-to)3629-3639
Number of pages11
JournalCerebral Cortex
Issue number10
StatePublished - Oct 2015
Externally publishedYes


  • Dopamine
  • Prefrontal cortex
  • Reversal learning
  • Set shifting
  • fMRI


Dive into the research topics of 'Dopamine, salience, and response set shifting in prefrontal cortex'. Together they form a unique fingerprint.

Cite this