Diversity of sponge mitochondrial introns revealed by cox 1 sequences of Tetillidae

Amir Szitenberg, Chagai Rot, Micha Ilan, Dorothée Huchon*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Background. Animal mitochondrial introns are rare. In sponges and cnidarians they have been found in the cox 1 gene of some spirophorid and homosclerophorid sponges, as well as in the cox 1 and nad 5 genes of some Hexacorallia. Their sporadic distribution has raised a debate as to whether these mobile elements have been vertically or horizontally transmitted among their hosts. The first sponge found to possess a mitochondrial intron was a spirophorid sponge from the Tetillidae family. To better understand the mode of transmission of mitochondrial introns in sponges, we studied cox 1 intron distribution among representatives of this family. Results. Seventeen tetillid cox 1 sequences were examined. Among these sequences only six were found to possess group I introns. Remarkably, three different forms of introns were found, named introns 714, 723 and 870 based on their different positions in the cox 1 alignment. These introns had distinct secondary structures and encoded LAGLIDADG ORFs belonging to three different lineages. Interestingly, sponges harboring the same intron form did not always form monophyletic groups, suggesting that their introns might have been transferred horizontally. To evaluate whether the introns were vertically or horizontally transmitted in sponges and cnidarians we used a host parasite approach. We tested for co-speciation between introns 723 (the introns with the highest number of sponge representatives) and their nesting cox 1 sequences. Reciprocal AU tests indicated that the intron and cox 1 tree are significantly different, while a likelihood ratio test was not significant. A global test of co-phylogeny had significant results; however, when cnidarian sequences were analyzed separately the results were not significant. Conclusions. The co-speciation analyses thus suggest that a vertical transmission of introns in the ancestor of sponges and cnidarians, followed by numerous independent losses, cannot solely explain the current distribution of metazoan group I introns. An alternative scenario that includes horizontal gene transfer events appears to be more suitable to explain the incongruence between the intron 723 and the cox 1 topologies. In addition, our results suggest that three different intron forms independently colonized the cox 1 gene of tetillids. Among sponges, the Tetillidae family seems to be experiencing an unusual number of intron insertions.

Original languageEnglish
Article number288
JournalBMC Evolutionary Biology
Issue number1
StatePublished - 2010


Dive into the research topics of 'Diversity of sponge mitochondrial introns revealed by cox 1 sequences of Tetillidae'. Together they form a unique fingerprint.

Cite this