Distributed algorithms made secure: A graph theoretic approach

Merav Parter, Eylon Yogev

Research output: Contribution to conferencePaperpeer-review


In the area of distributed graph algorithms a number of network’s entities with local views solve some computational task by exchanging messages with their neighbors. Quite unfortunately, an inherent property of most existing distributed algorithms is that throughout the course of their execution, the nodes get to learn not only their own output but rather learn quite a lot on the inputs or outputs of many other entities. This leakage of information might be a major obstacle in settings where the output (or input) of network’s individual is a private information (e.g., distributed networks of selfish agents, decentralized digital currency such as Bitcoin). While being quite an unfamiliar notion in the classical distributed setting, the notion of secure multi-party computation (MPC) is one of the main themes in the Cryptographic community. The existing secure MPC protocols do not quite fit the framework of classical distributed models in which only messages of bounded size are sent on graph edges in each round. In this paper, we introduce a new framework for secure distributed graph algorithms and provide the first general compiler that takes any “natural” non-secure distributed algorithm that runs in r rounds, and turns it into a secure algorithm that runs in Oe(r·D·poly(∆)) rounds where ∆ is the maximum degree in the graph and D is its diameter. A “natural” distributed algorithm is one where the local computation at each node can be performed in polynomial time. An interesting advantage of our approach is that it allows one to decouple between the price of locality and the price of security of a given graph function f. The security of the compiled algorithm is information-theoretic but holds only against a semi-honest adversary that controls a single node in the network. This compiler is made possible due to a new combinatorial structure called private neighborhood trees: a collection of n trees T(u1), . . ., T(un), one for each vertex ui ∈ V (G), such that each tree T(ui) spans the neighbors of ui without going through ui. Intuitively, each tree T(ui) allows all neighbors of ui to exchange a secret that is hidden from ui, which is the basic graph infrastructure of the compiler. In a (d, c)-private neighborhood trees each tree T(ui) has depth at most d and each edge e ∈ G appears in at most c different trees. We show a construction of private neighborhood trees with d = Oe(∆ · D) and c = Oe(D), both these bounds are existentially optimal.

Original languageEnglish
Number of pages18
StatePublished - 2019
Externally publishedYes
Event30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019 - San Diego, United States
Duration: 6 Jan 20199 Jan 2019


Conference30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019
Country/TerritoryUnited States
CitySan Diego


Dive into the research topics of 'Distributed algorithms made secure: A graph theoretic approach'. Together they form a unique fingerprint.

Cite this