TY - JOUR
T1 - Discrete solitons and vortices on anisotropic lattices
AU - Kevrekidis, P. G.
AU - Frantzeskakis, D. J.
AU - Carretero-González, R.
AU - Malomed, B. A.
AU - Bishop, A. R.
PY - 2005/10
Y1 - 2005/10
N2 - We consider the effects of anisotropy on solitons of various types in two-dimensional nonlinear lattices, using the discrete nonlinear Schrödinger equation as a paradigm model. For fundamental solitons, we develop a variational approximation that predicts that broad quasicontinuum solitons are unstable, while their strongly anisotropic counterparts are stable. By means of numerical methods, it is found that, in the general case, the fundamental solitons and simplest on-site-centered vortex solitons ("vortex crosses") feature enhanced or reduced stability areas, depending on the strength of the anisotropy. More surprising is the effect of anisotropy on the so-called "super-symmetric" intersite-centered vortices ("vortex squares"), with the topological charge S equal to the square's size M: we predict in an analytical form by means of the Lyapunov-Schmidt theory, and confirm by numerical results, that arbitrarily weak anisotropy results in dramatic changes in the stability and dynamics in comparison with the degenerate, in this case, isotropic, limit.
AB - We consider the effects of anisotropy on solitons of various types in two-dimensional nonlinear lattices, using the discrete nonlinear Schrödinger equation as a paradigm model. For fundamental solitons, we develop a variational approximation that predicts that broad quasicontinuum solitons are unstable, while their strongly anisotropic counterparts are stable. By means of numerical methods, it is found that, in the general case, the fundamental solitons and simplest on-site-centered vortex solitons ("vortex crosses") feature enhanced or reduced stability areas, depending on the strength of the anisotropy. More surprising is the effect of anisotropy on the so-called "super-symmetric" intersite-centered vortices ("vortex squares"), with the topological charge S equal to the square's size M: we predict in an analytical form by means of the Lyapunov-Schmidt theory, and confirm by numerical results, that arbitrarily weak anisotropy results in dramatic changes in the stability and dynamics in comparison with the degenerate, in this case, isotropic, limit.
UR - http://www.scopus.com/inward/record.url?scp=28944451932&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.72.046613
DO - 10.1103/PhysRevE.72.046613
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:28944451932
SN - 1539-3755
VL - 72
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 4
M1 - 046613
ER -