TY - JOUR
T1 - Discrete solitons and vortices in the two-dimensional Salerno model with competing nonlinearities
AU - Gómez-Gardeñes, J.
AU - Malomed, B. A.
AU - Floría, L. M.
AU - Bishop, A. R.
PY - 2006
Y1 - 2006
N2 - An anisotropic lattice model in two spatial dimensions, with on-site and intersite cubic nonlinearities (the Salerno model), is introduced, with emphasis on the case in which the intersite nonlinearity is self-defocusing, competing with on-site self-focusing. The model applies, for example, to a dipolar Bose-Einstein condensate trapped in a deep two-dimensional (2D) optical lattice. Soliton families of two kinds are found in the model: ordinary ones and cuspons, with peakons at the border between them. Stability borders for the ordinary solitons are found, while all cuspons (and peakons) are stable. The Vakhitov-Kolokolov criterion does not apply to cuspons, but for the ordinary solitons it correctly identifies the stability limits. In direct simulations, unstable solitons evolve into localized pulsons. Varying the anisotropy parameter, we trace a transition between the solitons in 1D and 2D versions of the model. In the isotropic model, we also construct discrete vortices of two types, on-site and intersite centered (vortex crosses and squares, respectively), and identify their stability regions. In simulations, unstable vortices in the noncompeting model transform into regular solitons, while in the model with the competing nonlinearities they evolve into localized vortical pulsons, which maintain their topological character. Bound states of regular solitons and vortices are constructed too, and their stability is identified.
AB - An anisotropic lattice model in two spatial dimensions, with on-site and intersite cubic nonlinearities (the Salerno model), is introduced, with emphasis on the case in which the intersite nonlinearity is self-defocusing, competing with on-site self-focusing. The model applies, for example, to a dipolar Bose-Einstein condensate trapped in a deep two-dimensional (2D) optical lattice. Soliton families of two kinds are found in the model: ordinary ones and cuspons, with peakons at the border between them. Stability borders for the ordinary solitons are found, while all cuspons (and peakons) are stable. The Vakhitov-Kolokolov criterion does not apply to cuspons, but for the ordinary solitons it correctly identifies the stability limits. In direct simulations, unstable solitons evolve into localized pulsons. Varying the anisotropy parameter, we trace a transition between the solitons in 1D and 2D versions of the model. In the isotropic model, we also construct discrete vortices of two types, on-site and intersite centered (vortex crosses and squares, respectively), and identify their stability regions. In simulations, unstable vortices in the noncompeting model transform into regular solitons, while in the model with the competing nonlinearities they evolve into localized vortical pulsons, which maintain their topological character. Bound states of regular solitons and vortices are constructed too, and their stability is identified.
UR - http://www.scopus.com/inward/record.url?scp=33748775509&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.74.036607
DO - 10.1103/PhysRevE.74.036607
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 17025764
AN - SCOPUS:33748775509
SN - 1539-3755
VL - 74
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 3
M1 - 036607
ER -