Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

Yoyo Hinuma, Taisuke Hatakeyama, Yu Kumagai, Lee A. Burton, Hikaru Sato, Yoshinori Muraba, Soshi Iimura, Hidenori Hiramatsu, Isao Tanaka, Hideo Hosono, Fumiyasu Oba*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

223 Scopus citations

Abstract

Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications.

Original languageEnglish
Article number11962
JournalNature Communications
Volume7
DOIs
StatePublished - 21 Jun 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis'. Together they form a unique fingerprint.

Cite this