DINOv2 Based Self Supervised Learning for Few Shot Medical Image Segmentation

Lev Ayzenberg*, Raja Giryes, Hayit Greenspan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Deep learning models have emerged as the cornerstone of medical image segmentation, but their efficacy hinges on the availability of extensive manually labeled datasets and their adaptability to unforeseen categories remains a challenge. Few-shot segmentation (FSS) offers a promising solution by endowing models with the capacity to learn novel classes from limited labeled examples. A leading method for FSS is ALPNet, which compares features between the query image and the few available support segmented images. A key question about using ALPNet is how to design its features. In this work, we delve into the potential of using features from DINOv2, which is a foundational self-supervised learning model in computer vision. Leveraging the strengths of ALPNet and harnessing the feature extraction capabilities of DINOv2, we present a novel approach to few-shot segmentation that not only enhances performance but also paves the way for more robust and adaptable medical image analysis.

Original languageEnglish
Title of host publicationIEEE International Symposium on Biomedical Imaging, ISBI 2024 - Conference Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9798350313338
DOIs
StatePublished - 2024
Event21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 - Athens, Greece
Duration: 27 May 202430 May 2024

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference21st IEEE International Symposium on Biomedical Imaging, ISBI 2024
Country/TerritoryGreece
CityAthens
Period27/05/2430/05/24

Keywords

  • Deep Learning
  • Few Shot learning
  • Medical Image Segmentation
  • Self Supervised Learning

Fingerprint

Dive into the research topics of 'DINOv2 Based Self Supervised Learning for Few Shot Medical Image Segmentation'. Together they form a unique fingerprint.

Cite this