Dijet Resonance Search with Weak Supervision Using sqrt[s]=13 TeV pp Collisions in the ATLAS Detector

(ATLAS Collaboration)

Research output: Contribution to journalArticlepeer-review

95 Scopus citations

Abstract

This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A→BC, for mA∼O(TeV), mB,mC∼O(100 GeV) and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 s=13 TeV pp collision dataset of 139 fb-1 recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA=3 TeV and mBâ200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on mC. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model bosons.

Original languageEnglish
Article number131801
JournalPhysical Review Letters
Volume125
Issue number13
DOIs
StatePublished - Sep 2020

Funding

FundersFunder number
Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)
BSF-NSF
Agence Nationale de la Recherche
Australian Research Council
Centre National pour la Recherche Scientifique et Technique
Fundação para a Ciência e a Tecnologia
Comisión Nacional de Investigación Científica y Tecnológica
Narodowe Centrum Nauki
National Science Foundation
CEA-DRF
Japan Society for the Promotion of Science
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Ministry of Science and Technology, Taiwan
Israel Science Foundation
Wallenberg Foundation
Leverhulme Trust
Arizona-Nevada Academy of Science
Javna Agencija za Raziskovalno Dejavnost RS
VSC CR, Czech Republic
Generalitat de Catalunya
Instituto Nazionale di Fisica Nucleare
Bundesministerium für Wissenschaft, Forschung und Wirtschaft
Austrian Science Fund
Department of Science and Technology, Ministry of Science and Technology, India
MSMT
MSSR
Ministerio de Economía y Competitividad
Bundesministerium für Bildung und Forschung
PROMETEO Programme Generalitat Valenciana, Spain
Canada Foundation for Innovation
Helmholtz-Gemeinschaft
Danmarks Grundforskningsfond
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Horizon 2020, Marie Skłodowska-Curie Actions
Singapore Eye Research Institute
Canarie
Göran Gustafssons Stiftelser
MIZŠ
Deutsche Forschungsgemeinschaft
Neurosurgical Research Foundation
MESTD
U.S. Department of Energy
European Cooperation in Science and Technology
EU-ESF
RGC
Fundação de Amparo à Pesquisa do Estado de São Paulo
MES of Russia
National Research Center "Kurchatov Institute"
Institutul de Fizică Atomică
Natural Sciences and Engineering Research Council of Canada
General Secretariat for Research and Technology
Nella and Leon Benoziyo Center for Neurological Diseases, Weizmann Institute of Science
Cantons of Bern and Geneva
Chinese Academy of Sciences
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Glycemic Index Foundation
CRC Health Group
Compute Canada
MNE
Agencia Nacional de Promoción Científica y Tecnológica
Royal Society
European Research Council
European Regional Development Fund
Ministerstwo Nauki i Szkolnictwa Wyższego
IRFU
CERN
Joint Institute for Nuclear Research
National Research Council Canada
Alexander von Humboldt-Stiftung
British Columbia Knowledge Development Fund
Ministry of Education, Culture, Sports, Science and Technology
National Natural Science Foundation of China
DNSRCIN2P3-CNRS
Science and Technology Facilities CouncilGRIDPP
Horizon 2020 Framework Programme754510

    Fingerprint

    Dive into the research topics of 'Dijet Resonance Search with Weak Supervision Using sqrt[s]=13 TeV pp Collisions in the ATLAS Detector'. Together they form a unique fingerprint.

    Cite this