TY - JOUR
T1 - Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts
AU - Shvartsman, Dmitry E.
AU - Kotler, Mariana
AU - Tall, Renee D.
AU - Roth, Michael G.
AU - Henis, Yoav I.
PY - 2003/11/24
Y1 - 2003/11/24
N2 - Lipid rafts play important roles in cellular functions through concentrating or sequestering membrane proteins. This requires proteins to differ in the stability of their interactions with lipid rafts. However, knowledge of the dynamics of membrane protein-raft interactions is lacking. We employed FRAP to measure in live cells the lateral diffusion of influenza hemagglutinin (HA) proteins that differ in raft association. This approach can detect weak interactions with rafts not detectable by biochemical methods. Wild-type (wt) HA and glycosylphosphatidylinositol (GPI)-anchored HA (BHA-PI) diffused slower than a nonraft HA mutant, but became equal to the latter after cholesterol depletion. When antigenically distinct BHA-PI and wt HA were coexpressed, aggregation of BHA-PI into immobile patches reduced wt HA diffusion rate, suggesting transient interactions with BHA-PI raft patches. Conversely, patching wt HA reduced the mobile fraction of BHA-PI, indicating stable interactions with wt HA patches. Thus, the anchoring mode determines protein-raft interaction dynamics. GPI-anchored and transmembrane proteins can share the same rafts, and different proteins can interact stably or transiently with the same raft domains.
AB - Lipid rafts play important roles in cellular functions through concentrating or sequestering membrane proteins. This requires proteins to differ in the stability of their interactions with lipid rafts. However, knowledge of the dynamics of membrane protein-raft interactions is lacking. We employed FRAP to measure in live cells the lateral diffusion of influenza hemagglutinin (HA) proteins that differ in raft association. This approach can detect weak interactions with rafts not detectable by biochemical methods. Wild-type (wt) HA and glycosylphosphatidylinositol (GPI)-anchored HA (BHA-PI) diffused slower than a nonraft HA mutant, but became equal to the latter after cholesterol depletion. When antigenically distinct BHA-PI and wt HA were coexpressed, aggregation of BHA-PI into immobile patches reduced wt HA diffusion rate, suggesting transient interactions with BHA-PI raft patches. Conversely, patching wt HA reduced the mobile fraction of BHA-PI, indicating stable interactions with wt HA patches. Thus, the anchoring mode determines protein-raft interaction dynamics. GPI-anchored and transmembrane proteins can share the same rafts, and different proteins can interact stably or transiently with the same raft domains.
KW - Fluorescence
KW - Influenza hemagglutinin
KW - Lateral diffusion
KW - Photobleaching
KW - Rafts
UR - http://www.scopus.com/inward/record.url?scp=0345599000&partnerID=8YFLogxK
U2 - 10.1083/jcb.200308142
DO - 10.1083/jcb.200308142
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0345599000
SN - 0021-9525
VL - 163
SP - 879
EP - 888
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 4
ER -