Differential response to heat stress among evolutionary lineages of an aquatic invertebrate species complex

Sofia Paraskevopoulou*, Ralph Tiedemann, Guntram Weithoff

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The Brachionus calyciflorus species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named B. calyciflorus sensu stricto (s.s.) and B. fernandoi. We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with B. calyciflorus s.s. clones having higher heat tolerance than the novel species B. fernandoi. This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated.

Original languageEnglish
Article number20180498
JournalBiology Letters
Volume14
Issue number11
DOIs
StatePublished - 1 Nov 2018
Externally publishedYes

Keywords

  • Brachionus calyciflorus
  • Critical thermal maximum
  • Cryptic species
  • Ecological speciation
  • Heat tolerance
  • Rotifers

Fingerprint

Dive into the research topics of 'Differential response to heat stress among evolutionary lineages of an aquatic invertebrate species complex'. Together they form a unique fingerprint.

Cite this