TY - JOUR
T1 - Differential amplification, assembly, and relocation of multiple DNA sequences in human neuroblastomas and neuroblastoma cell lines
AU - Shiloh, Y.
AU - Shipley, J.
AU - Brodeur, G. M.
AU - Bruns, G.
AU - Korf, B.
AU - Donlon, T.
AU - Schreck, R. R.
AU - Seeger, R.
AU - Sakai, K.
AU - Latt, S. A.
PY - 1985
Y1 - 1985
N2 - DNA amplification, manifested by homogeneously staining regions in chromosomes and by extrachromosomal, double minute bodies, is characteristic of many neuroblastoma cell lines. Sequences recruited from a specific domain on the short arm of chromosome 2 (2p) are amplified in advanced-stage primary neuroblastomas, whereas sequences from distinctly different regions of 2p are amplified in the neuroblastoma cell line IMR-32. Five different DNA segments, which include the oncogene N-myc, three other fragments derived from the homogeneously staining region of the neuroblastoma cell line IMR-32, and a fifth fragment, derived from the neuroblastoma cell line NB-9, showed differential and variable amplification in 24 advanced-stage neuroblastoma tumors out of 112 tested specimens. All five fragments were mapped within the chromosomal region 2p23-2p25 by three different approaches. However, eight other fragments cloned from the homogeneously staining region of IMR-32 cells, which were not amplified in the tumor tissues examined, were mapped to two more proximal domains of 2p, thousands of kilobases apart from each other and from the chromosomal domain that is amplified in the tumors. These results establish the amplification, to different degrees, of a variable-sized segment of one domain near the terminus of 2p in advanced neuroblastomas. These tumors might ultimately be distinguished according to the pattern of amplification of DNA segments within this domain. The data presented also indicate the existence of a new and complex amplification mechanism in at least one neuroblastoma cell line (IMR-32), which involves not only relocation of DNA from specific genomic domains but also the formation of novel units by splicing together very distant DNA segments.
AB - DNA amplification, manifested by homogeneously staining regions in chromosomes and by extrachromosomal, double minute bodies, is characteristic of many neuroblastoma cell lines. Sequences recruited from a specific domain on the short arm of chromosome 2 (2p) are amplified in advanced-stage primary neuroblastomas, whereas sequences from distinctly different regions of 2p are amplified in the neuroblastoma cell line IMR-32. Five different DNA segments, which include the oncogene N-myc, three other fragments derived from the homogeneously staining region of the neuroblastoma cell line IMR-32, and a fifth fragment, derived from the neuroblastoma cell line NB-9, showed differential and variable amplification in 24 advanced-stage neuroblastoma tumors out of 112 tested specimens. All five fragments were mapped within the chromosomal region 2p23-2p25 by three different approaches. However, eight other fragments cloned from the homogeneously staining region of IMR-32 cells, which were not amplified in the tumor tissues examined, were mapped to two more proximal domains of 2p, thousands of kilobases apart from each other and from the chromosomal domain that is amplified in the tumors. These results establish the amplification, to different degrees, of a variable-sized segment of one domain near the terminus of 2p in advanced neuroblastomas. These tumors might ultimately be distinguished according to the pattern of amplification of DNA segments within this domain. The data presented also indicate the existence of a new and complex amplification mechanism in at least one neuroblastoma cell line (IMR-32), which involves not only relocation of DNA from specific genomic domains but also the formation of novel units by splicing together very distant DNA segments.
UR - http://www.scopus.com/inward/record.url?scp=0022363208&partnerID=8YFLogxK
U2 - 10.1073/pnas.82.11.3761
DO - 10.1073/pnas.82.11.3761
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0022363208
SN - 0027-8424
VL - 82
SP - 3761
EP - 3765
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 11
ER -