Diabetes technology and treatments in the paediatric age group.

S. Shalitin*, H. Peter Chase

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

Abstract

Type 1 diabetes (T1D) is one of the most common chronic childhood diseases and its incidence has doubled during the last decade. The goals of intensive management of diabetes were established in 1993 by the Diabetes Control and Complications Trial (DCCT) (1). Children with T1D and their caregivers continue to face the challenge to maintain blood glucose levels in the near-normal range. It is important to prevent sustained hyperglycaemia which is associated with long-term microvascular and macrovascular complications and to avoid recurrent episodes of hypoglycaemia or hyperglycaemia, especially in young children, which may have adverse effects on cognitive function and impede efforts to achieve the recommended glycaemic targets. Advances in the use of technology that may help maintain the metabolic control goals for young people with T1D were centred on continuous subcutaneous insulin infusion (CSII) (2-4), continuous glucose monitoring (CGM) (5-7), and combining both technologies into a closed-loop system (8-10). The dilemma in paediatrics of patient selection for insulin pump therapy was found to be most successful in those with more frequent self-monitoring of blood glucose (SMBG) and younger age prior to pump initiation (2). Similarly, those who used a dual-wave bolus probably paid closer attention to their management and had lower HbA1c levels (3). The advantage of using a pre-meal bolus to improve postprandial glucose levels was shown to offer another potential method to improve glycaemic control (4). SMBG is an important component of therapy in patients with diabetes, especially in the paediatric age group. Standard use of glucose meters for SMBG provides only intermittent single blood glucose levels, without giving the 'whole picture' of glucose variability during the 24 h, and especially during the night, when blood glucose levels are seldom measured. Therefore, the use of a device such as real-time continuous glucose monitoring (RT-CGM) that provides continuous glucose measurements can help patients optimise glycaemic control. These devices may have the potential to increase the proportion of patients who are able to maintain target HbA1c values, to decrease glucose excursions and to decrease the risk of severe hypoglycaemia. Previous studies in paediatric T1D patients (11,12) have demonstrated that the frequency of CGM use was significantly associated with the effect of lowering HbA1c levels.

Original languageEnglish
Pages (from-to)76-82
Number of pages7
JournalInternational Journal of Clinical Practice, Supplement
Issue number170
StatePublished - Feb 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Diabetes technology and treatments in the paediatric age group.'. Together they form a unique fingerprint.

Cite this