TY - JOUR
T1 - Development of graded composition and microstructure on Inconel 718 by laser surface alloying with Si, Al and ZrB2 for improvement in high temperature oxidation resistance
AU - Kumar, Manoj
AU - Das, Mitun
AU - Majumdar, Jyotsna Dutta
AU - Manna, Indranil
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/11/25
Y1 - 2020/11/25
N2 - The present study evaluates the scope of improvement of oxidation resistance of Inconel 718 (IN718) by laser surface alloying (LSA) with Si, Al and ZrB2 using a 0.5 kW continuous wave Nd-YAG laser. The alloyed zone (AZ) is free of macro-defects (porosity, crack, etc.) and contains microstructural and compositional gradation along vertical depth from the top surface until the AZ-substrate interface. Detailed microstructural and phase evolution studies indicate that the AZ consists of multiple intermetallic phases/compounds of Si, Al or Zr with multi-phase eutectic aggregate including Ni-rich matrix phase. The identity, size, morphology and relative amount of these phases vary with LSA parameters and vertical depth within the AZ. Accordingly, the microhardness profile along depth corroborates such graded microstructure and phase aggregate confined to the AZ. Isothermal oxidation studies at 900 °C show significant improvement in oxidation resistance due to LSA in comparison to that of as-received IN718, particularly in case of LSA with Si. Post oxidation studies reveal that the oxide scale consists of adherent oxides like SiO2, Al2O3 or ZrO2, in addition to several intermetallic phases pre-existing in the AZ prior to oxidation. Thus, it follows that the intermetallic phase rich AZ developed by LSA is adherent, defect-free, strong and offers very high resistance to oxidation in IN718 at elevated temperature.
AB - The present study evaluates the scope of improvement of oxidation resistance of Inconel 718 (IN718) by laser surface alloying (LSA) with Si, Al and ZrB2 using a 0.5 kW continuous wave Nd-YAG laser. The alloyed zone (AZ) is free of macro-defects (porosity, crack, etc.) and contains microstructural and compositional gradation along vertical depth from the top surface until the AZ-substrate interface. Detailed microstructural and phase evolution studies indicate that the AZ consists of multiple intermetallic phases/compounds of Si, Al or Zr with multi-phase eutectic aggregate including Ni-rich matrix phase. The identity, size, morphology and relative amount of these phases vary with LSA parameters and vertical depth within the AZ. Accordingly, the microhardness profile along depth corroborates such graded microstructure and phase aggregate confined to the AZ. Isothermal oxidation studies at 900 °C show significant improvement in oxidation resistance due to LSA in comparison to that of as-received IN718, particularly in case of LSA with Si. Post oxidation studies reveal that the oxide scale consists of adherent oxides like SiO2, Al2O3 or ZrO2, in addition to several intermetallic phases pre-existing in the AZ prior to oxidation. Thus, it follows that the intermetallic phase rich AZ developed by LSA is adherent, defect-free, strong and offers very high resistance to oxidation in IN718 at elevated temperature.
KW - Alloyed zone
KW - Graded microstructure and composition
KW - Intermetallic phases and compounds
KW - Laser surface alloying
KW - Microstructure
KW - Oxidation resistance
UR - http://www.scopus.com/inward/record.url?scp=85090199036&partnerID=8YFLogxK
U2 - 10.1016/j.surfcoat.2020.126345
DO - 10.1016/j.surfcoat.2020.126345
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85090199036
SN - 0257-8972
VL - 402
JO - Surface and Coatings Technology
JF - Surface and Coatings Technology
M1 - 126345
ER -